云顶娱乐平台 50

【云顶娱乐平台】爬虫—-Scrapy框架

需要注意的是:
#1、文档中的键/值对是有序的。
#2、文档中的值不仅可以是在双引号里面的字符串,还可以是其他几种数据类型(甚至可以是整个嵌入的文档)。
#3、MongoDB区分类型和大小写。
#4、MongoDB的文档不能有重复的键。
#5、文档中的值可以是多种不同的数据类型,也可以是一个完整的内嵌文档。文档的键是字符串。除了少数例外情况,键可以使用任意UTF-8字符。

文档键命名规范:
#1、键不能含有 (空字符)。这个字符用来表示键的结尾。
#2、.和$有特别的意义,只有在特定环境下才能使用。
#3、以下划线"_"开头的键是保留的(不是严格要求的)。

Scrapy

一 介绍

    Scrapy一个开源和协作的框架,其最初是为了页面抓取 (更确切来说,
网络抓取
)所设计的,使用它可以以快速、简单、可扩展的方式从网站中提取所需的数据。但目前Scrapy的用途十分广泛,可用于如数据挖掘、监测和自动化测试等领域,也可以应用在获取API所返回的数据(例如
Amazon Associates Web Services ) 或者通用的网络爬虫。

    Scrapy
是基于twisted框架开发而来,twisted是一个流行的事件驱动的python网络框架。因此Scrapy使用了一种非阻塞(又名异步)的代码来实现并发。整体架构大致如下
云顶娱乐平台 1

The data flow in Scrapy is controlled by the execution engine, and
goes like this:

  1. The Engine gets
    the initial Requests to crawl from
    the Spider.
  2. The Engine schedules
    the Requests in
    the Scheduler and
    asks for the next Requests to crawl.
  3. The Scheduler returns
    the next Requests to
    the Engine.
  4. The Engine sends
    the Requests to
    the Downloader,
    passing through the Downloader
    Middlewares (see process_request()).
  5. Once the page finishes downloading
    the Downloader generates
    a Response (with that page) and sends it to the Engine, passing
    through the Downloader
    Middlewares (see process_response()).
  6. The Engine receives
    the Response from
    the Downloader and
    sends it to
    the Spider for
    processing, passing through the Spider
    Middleware (see process_spider_input()).
  7. The Spider processes
    the Response and returns scraped items and new Requests (to follow)
    to
    the Engine,
    passing through the Spider
    Middleware (see process_spider_output()).
  8. The Engine sends
    processed items to Item
    Pipelines,
    then send processed Requests to
    the Scheduler and
    asks for possible next Requests to crawl.
  9. The process repeats (from step 1) until there are no more requests
    from
    the Scheduler.

 

Components:

  1. 引擎(EGINE)
    引擎负责控制系统所有组件之间的数据流,并在某些动作发生时触发事件。有关详细信息,请参见上面的数据流部分。

  2. 调度器(SCHEDULER)
    用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回.
    可以想像成一个URL的优先级队列, 由它来决定下一个要抓取的网址是什么,
    同时去除重复的网址

  3. 下载器(DOWLOADER)
    用于下载网页内容,
    并将网页内容返回给EGINE,下载器是建立在twisted这个高效的异步模型上的
  4. 爬虫(SPIDERS)
    SPIDERS是开发人员自定义的类,用来解析responses,并且提取items,或者发送新的请求
  5. 项目管道(ITEM PIPLINES)
    在items被提取后负责处理它们,主要包括清理、验证、持久化(比如存到数据库)等操作
  6. 下载器中间件(Downloader Middlewares)
    位于Scrapy引擎和下载器之间,主要用来处理从EGINE传到DOWLOADER的请求request,已经从DOWNLOADER传到EGINE的响应response,你可用该中间件做以下几件事

    1. process a request just before it is sent to the Downloader (i.e.
      right before Scrapy sends the request to the website);
    2. change received response before passing it to a spider;
    3. send a new Request instead of passing received response to a
      spider;
    4. pass response to a spider without fetching a web page;
    5. silently drop some requests.
  7. 爬虫中间件(Spider Middlewares)
    位于EGINE和SPIDERS之间,主要工作是处理SPIDERS的输入(即responses)和输出(即requests)

官网链接:https://docs.scrapy.org/en/latest/topics/architecture.html

比较运算

十、 爬取亚马逊商品信息

云顶娱乐平台 2云顶娱乐平台 3

1、
scrapy startproject Amazon
cd Amazon
scrapy genspider spider_goods www.amazon.cn

2、settings.py
ROBOTSTXT_OBEY = False
#请求头
DEFAULT_REQUEST_HEADERS = {
    'Referer':'https://www.amazon.cn/',
    'User-Agent':'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.75 Safari/537.36'
}
#打开注释
HTTPCACHE_ENABLED = True
HTTPCACHE_EXPIRATION_SECS = 0
HTTPCACHE_DIR = 'httpcache'
HTTPCACHE_IGNORE_HTTP_CODES = []
HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'

3、items.py
class GoodsItem(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()
    #商品名字
    goods_name = scrapy.Field()
    #价钱
    goods_price = scrapy.Field()
    #配送方式
    delivery_method=scrapy.Field()

4、spider_goods.py
# -*- coding: utf-8 -*-
import scrapy

from Amazon.items import  GoodsItem
from scrapy.http import Request
from urllib.parse import urlencode

class SpiderGoodsSpider(scrapy.Spider):
    name = 'spider_goods'
    allowed_domains = ['www.amazon.cn']
    # start_urls = ['http://www.amazon.cn/']


    def __int__(self,keyword=None,*args,**kwargs):
        super(SpiderGoodsSpider).__init__(*args,**kwargs)
        self.keyword=keyword

    def start_requests(self):
        url='https://www.amazon.cn/s/ref=nb_sb_noss_1?'
        paramas={
            '__mk_zh_CN': '亚马逊网站',
            'url': 'search - alias = aps',
            'field-keywords': self.keyword
        }
        url=url+urlencode(paramas,encoding='utf-8')
        yield Request(url,callback=self.parse_index)


    def parse_index(self, response):
        print('解析索引页:%s' %response.url)

        urls=response.xpath('//*[contains(@id,"result_")]/div/div[3]/div[1]/a/@href').extract()
        for url in urls:
            yield Request(url,callback=self.parse_detail)

        next_url=response.urljoin(response.xpath('//*[@id="pagnNextLink"]/@href').extract_first())
        print('下一页的url',next_url)
        yield Request(next_url,callback=self.parse_index)

    def parse_detail(self,response):
        print('解析详情页:%s' %(response.url))

        item=GoodsItem()
        # 商品名字
        item['goods_name'] = response.xpath('//*[@id="productTitle"]/text()').extract_first().strip()
        # 价钱
        item['goods_price'] = response.xpath('//*[@id="priceblock_ourprice"]/text()').extract_first().strip()
        # 配送方式
        item['delivery_method'] = ''.join(response.xpath('//*[@id="ddmMerchantMessage"]//text()').extract())
        return item

5、自定义pipelines
#sql.py
import pymysql
import settings


MYSQL_HOST=settings.MYSQL_HOST
MYSQL_PORT=settings.MYSQL_PORT
MYSQL_USER=settings.MYSQL_USER
MYSQL_PWD=settings.MYSQL_PWD
MYSQL_DB=settings.MYSQL_DB

conn=pymysql.connect(
    host=MYSQL_HOST,
    port=int(MYSQL_PORT),
    user=MYSQL_USER,
    password=MYSQL_PWD,
    db=MYSQL_DB,
    charset='utf8'
)
cursor=conn.cursor()

class Mysql(object):
    @staticmethod
    def insert_tables_goods(goods_name,goods_price,deliver_mode):
        sql='insert into goods(goods_name,goods_price,delivery_method) values(%s,%s,%s)'
        cursor.execute(sql,args=(goods_name,goods_price,deliver_mode))
        conn.commit()

    @staticmethod
    def is_repeat(goods_name):
        sql='select count(1) from goods where goods_name=%s'
        cursor.execute(sql,args=(goods_name,))
        if cursor.fetchone()[0] >= 1:
            return True

if __name__ == '__main__':
    cursor.execute('select * from goods;')
    print(cursor.fetchall())


#pipelines.py
from Amazon.mysqlpipelines.sql import Mysql


class AmazonPipeline(object):
    def process_item(self, item, spider):
        goods_name=item['goods_name']
        goods_price=item['goods_price']
        delivery_mode=item['delivery_method']
        if not Mysql.is_repeat(goods_name):
            Mysql.insert_table_goods(goods_name,goods_price,delivery_mode)



6、创建数据库表
create database amazon charset utf8;
create table goods(
    id int primary key auto_increment,
    goods_name char(30),
    goods_price char(20),
    delivery_method varchar(50)
);

7、settings.py
MYSQL_HOST='localhost'
MYSQL_PORT='3306'
MYSQL_USER='root'
MYSQL_PWD='123'
MYSQL_DB='amazon'


#数字代表优先级程度(1-1000随意设置,数值越低,组件的优先级越高)
ITEM_PIPELINES = {
   'Amazon.mysqlpipelines.pipelines.mazonPipeline': 1,
}


#8、在项目目录下新建:entrypoint.py
from scrapy.cmdline import execute
execute(['scrapy', 'crawl', 'spider_goods','-a','keyword=iphone8'])

View Code

 

 

 

 

九 Dowloader Middeware

下载中间件的用途
    1、在process——request内,自定义下载,不用scrapy的下载
    2、对请求进行二次加工,比如
        设置请求头
        设置cookie
        添加代理
            scrapy自带的代理组件:
                from scrapy.downloadermiddlewares.httpproxy import HttpProxyMiddleware
                from urllib.request import getproxies

云顶娱乐平台 4云顶娱乐平台 5

class DownMiddleware1(object):
    def process_request(self, request, spider):
        """
        请求需要被下载时,经过所有下载器中间件的process_request调用
        :param request: 
        :param spider: 
        :return:  
            None,继续后续中间件去下载;
            Response对象,停止process_request的执行,开始执行process_response
            Request对象,停止中间件的执行,将Request重新调度器
            raise IgnoreRequest异常,停止process_request的执行,开始执行process_exception
        """
        pass



    def process_response(self, request, response, spider):
        """
        spider处理完成,返回时调用
        :param response:
        :param result:
        :param spider:
        :return: 
            Response 对象:转交给其他中间件process_response
            Request 对象:停止中间件,request会被重新调度下载
            raise IgnoreRequest 异常:调用Request.errback
        """
        print('response1')
        return response

    def process_exception(self, request, exception, spider):
        """
        当下载处理器(download handler)或 process_request() (下载中间件)抛出异常
        :param response:
        :param exception:
        :param spider:
        :return: 
            None:继续交给后续中间件处理异常;
            Response对象:停止后续process_exception方法
            Request对象:停止中间件,request将会被重新调用下载
        """
        return None

下载器中间件

下载中间件

云顶娱乐平台 6云顶娱乐平台 7

#1、与middlewares.py同级目录下新建proxy_handle.py
import requests

def get_proxy():
    return requests.get("http://127.0.0.1:5010/get/").text

def delete_proxy(proxy):
    requests.get("http://127.0.0.1:5010/delete/?proxy={}".format(proxy))



#2、middlewares.py
from Amazon.proxy_handle import get_proxy,delete_proxy

class DownMiddleware1(object):
    def process_request(self, request, spider):
        """
        请求需要被下载时,经过所有下载器中间件的process_request调用
        :param request:
        :param spider:
        :return:
            None,继续后续中间件去下载;
            Response对象,停止process_request的执行,开始执行process_response
            Request对象,停止中间件的执行,将Request重新调度器
            raise IgnoreRequest异常,停止process_request的执行,开始执行process_exception
        """
        proxy="http://" + get_proxy()
        request.meta['download_timeout']=20
        request.meta["proxy"] = proxy
        print('为%s 添加代理%s ' % (request.url, proxy),end='')
        print('元数据为',request.meta)

    def process_response(self, request, response, spider):
        """
        spider处理完成,返回时调用
        :param response:
        :param result:
        :param spider:
        :return:
            Response 对象:转交给其他中间件process_response
            Request 对象:停止中间件,request会被重新调度下载
            raise IgnoreRequest 异常:调用Request.errback
        """
        print('返回状态吗',response.status)
        return response


    def process_exception(self, request, exception, spider):
        """
        当下载处理器(download handler)或 process_request() (下载中间件)抛出异常
        :param response:
        :param exception:
        :param spider:
        :return:
            None:继续交给后续中间件处理异常;
            Response对象:停止后续process_exception方法
            Request对象:停止中间件,request将会被重新调用下载
        """
        print('代理%s,访问%s出现异常:%s' %(request.meta['proxy'],request.url,exception))
        import time
        time.sleep(5)
        delete_proxy(request.meta['proxy'].split("//")[-1])
        request.meta['proxy']='http://'+get_proxy()

        return request

配置代理

配置代理

   增:

1. 基本命令

#1 查看帮助
    scrapy -h
    scrapy <command> -h

#2 有两种命令:其中Project-only必须切到项目文件夹下才能执行,而Global的命令则不需要
    Global commands:
        startproject #创建项目
        genspider    #创建爬虫程序 
                            如:
                              scrapy gensipider -t basic oldboy oldboy.com
                              scrapy gensipider -t xmlfeed autohome autohome.com.cn
        settings     #如果是在项目目录下,则得到的是该项目的配置
        runspider    #运行一个独立的python文件,不必创建项目
        shell        #scrapy shell url地址  在交互式调试,如选择器规则正确与否
        fetch        #独立于程单纯地爬取一个页面,可以拿到请求头
        view         #下载完毕后直接弹出浏览器,以此可以分辨出哪些数据是ajax请求
        version      #scrapy version 查看scrapy的版本,scrapy version -v查看scrapy依赖库的版本
    Project-only commands:
        crawl        #运行爬虫,必须创建项目才行,确保配置文件中ROBOTSTXT_OBEY = False
        check        #检测项目中有无语法错误
        list         #列出项目中所包含的爬虫名
        edit         #编辑器,一般不用
        parse        #scrapy parse url地址 --callback 回调函数  #以此可以验证我们的回调函数是否正确
        bench        #scrapy bentch压力测试

#3 官网链接
    https://docs.scrapy.org/en/latest/topics/commands.html        

云顶娱乐平台 8云顶娱乐平台 9

#1、执行全局命令:请确保不在某个项目的目录下,排除受该项目配置的影响
scrapy startproject MyProject

cd MyProject
scrapy genspider baidu www.baidu.com

scrapy settings --get XXX #如果切换到项目目录下,看到的则是该项目的配置

scrapy runspider baidu.py

scrapy shell https://www.baidu.com
    response
    response.status
    response.body
    view(response)

scrapy view https://www.taobao.com #如果页面显示内容不全,不全的内容则是ajax请求实现的,以此快速定位问题

scrapy fetch --nolog --headers https://www.taobao.com

scrapy version #scrapy的版本

scrapy version -v #依赖库的版本


#2、执行项目命令:切到项目目录下
scrapy crawl baidu
scrapy check
scrapy list
scrapy parse http://quotes.toscrape.com/ --callback parse
scrapy bench


示范用法

示范用法

 

2.项目结构以及爬虫应用简介

project_name/
   scrapy.cfg
   project_name/
       __init__.py
       items.py
       pipelines.py
       settings.py
       spiders/
           __init__.py
           爬虫1.py
           爬虫2.py
           爬虫3.py

文件说明:

  • scrapy.cfg
     项目的主配置信息。(真正爬虫相关的配置信息在settings.py文件中)
  • items.py    设置数据存储模板,用于结构化数据,如:Django的Model
  • pipelines    数据处理行为,如:一般结构化的数据持久化
  • settings.py 配置文件,如:递归的层数、并发数,延迟下载等
  • spiders      爬虫目录,如:创建文件,编写爬虫规则

注意:一般创建爬虫文件时,以网站域名命名

云顶娱乐平台 10云顶娱乐平台 11

import scrapy

class XiaoHuarSpider(scrapy.spiders.Spider):
    name = "xiaohuar"                            # 爬虫名称 *****
    allowed_domains = ["xiaohuar.com"]  # 允许的域名
    start_urls = [
        "http://www.xiaohuar.com/hua/",   # 其实URL
    ]

    def parse(self, response):
        # 访问起始URL并获取结果后的回调函数

云顶娱乐平台,爬虫1.py

云顶娱乐平台 12云顶娱乐平台 13

import sys,os
sys.stdout=io.TextIOWrapper(sys.stdout.buffer,encoding='gb18030')

关于windows编码

3. 小试牛刀

 

import scrapy
from scrapy.selector import HtmlXPathSelector
from scrapy.http.request import Request


class DigSpider(scrapy.Spider):
    # 爬虫应用的名称,通过此名称启动爬虫命令
    name = "dig"

    # 允许的域名
    allowed_domains = ["chouti.com"]

    # 起始URL
    start_urls = [
        'http://dig.chouti.com/',
    ]

    has_request_set = {}

    def parse(self, response):
        print(response.url)

        hxs = HtmlXPathSelector(response)
        page_list = hxs.select('//div[@id="dig_lcpage"]//a[re:test(@href, "/all/hot/recent/d+")]/@href').extract()
        for page in page_list:
            page_url = 'http://dig.chouti.com%s' % page
            key = self.md5(page_url)
            if key in self.has_request_set:
                pass
            else:
                self.has_request_set[key] = page_url
                obj = Request(url=page_url, method='GET', callback=self.parse)
                yield obj

    @staticmethod
    def md5(val):
        import hashlib
        ha = hashlib.md5()
        ha.update(bytes(val, encoding='utf-8'))
        key = ha.hexdigest()
        return key

  

执行此爬虫文件,则在终端进入项目目录执行如下命令:

scrapy crawl dig --nolog

对于上述代码重要之处在于:

  • Request是一个封装用户请求的类,在回调函数中yield该对象表示继续访问
  • HtmlXpathSelector用于结构化HTML代码并提供选择器功能

4. 选择器

#1 //与/
#2 text
#3、extract与extract_first:从selector对象中解出内容
#4、属性:xpath的属性加前缀@
#4、嵌套查找
#5、设置默认值
#4、按照属性查找
#5、按照属性模糊查找
#6、正则表达式
#7、xpath相对路径
#8、带变量的xpath

云顶娱乐平台 14云顶娱乐平台 15

response.selector.css()
response.selector.xpath()
可简写为
response.css()
response.xpath()

#1 //与/
response.xpath('//body/a/')#
response.css('div a::text')

>>> response.xpath('//body/a') #开头的//代表从整篇文档中寻找,body之后的/代表body的儿子
[]
>>> response.xpath('//body//a') #开头的//代表从整篇文档中寻找,body之后的//代表body的子子孙孙
[<Selector xpath='//body//a' data='<a href="image1.html">Name: My image 1 <'>, <Selector xpath='//body//a' data='<a href="image2.html">Name: My image 2 <'>, <Selector xpath='//body//a' data='<a href="
image3.html">Name: My image 3 <'>, <Selector xpath='//body//a' data='<a href="image4.html">Name: My image 4 <'>, <Selector xpath='//body//a' data='<a href="image5.html">Name: My image 5 <'>]

#2 text
>>> response.xpath('//body//a/text()')
>>> response.css('body a::text')

#3、extract与extract_first:从selector对象中解出内容
>>> response.xpath('//div/a/text()').extract()
['Name: My image 1 ', 'Name: My image 2 ', 'Name: My image 3 ', 'Name: My image 4 ', 'Name: My image 5 ']
>>> response.css('div a::text').extract()
['Name: My image 1 ', 'Name: My image 2 ', 'Name: My image 3 ', 'Name: My image 4 ', 'Name: My image 5 ']

>>> response.xpath('//div/a/text()').extract_first()
'Name: My image 1 '
>>> response.css('div a::text').extract_first()
'Name: My image 1 '

#4、属性:xpath的属性加前缀@
>>> response.xpath('//div/a/@href').extract_first()
'image1.html'
>>> response.css('div a::attr(href)').extract_first()
'image1.html'

#4、嵌套查找
>>> response.xpath('//div').css('a').xpath('@href').extract_first()
'image1.html'

#5、设置默认值
>>> response.xpath('//div[@id="xxx"]').extract_first(default="not found")
'not found'

#4、按照属性查找
response.xpath('//div[@id="images"]/a[@href="image3.html"]/text()').extract()
response.css('#images a[@href="image3.html"]/text()').extract()

#5、按照属性模糊查找
response.xpath('//a[contains(@href,"image")]/@href').extract()
response.css('a[href*="image"]::attr(href)').extract()

response.xpath('//a[contains(@href,"image")]/img/@src').extract()
response.css('a[href*="imag"] img::attr(src)').extract()

response.xpath('//*[@href="image1.html"]')
response.css('*[href="image1.html"]')

#6、正则表达式
response.xpath('//a/text()').re(r'Name: (.*)')
response.xpath('//a/text()').re_first(r'Name: (.*)')

#7、xpath相对路径
>>> res=response.xpath('//a[contains(@href,"3")]')[0]
>>> res.xpath('img')
[<Selector xpath='img' data='<img src="image3_thumb.jpg">'>]
>>> res.xpath('./img')
[<Selector xpath='./img' data='<img src="image3_thumb.jpg">'>]
>>> res.xpath('.//img')
[<Selector xpath='.//img' data='<img src="image3_thumb.jpg">'>]
>>> res.xpath('//img') #这就是从头开始扫描
[<Selector xpath='//img' data='<img src="image1_thumb.jpg">'>, <Selector xpath='//img' data='<img src="image2_thumb.jpg">'>, <Selector xpath='//img' data='<img src="image3_thumb.jpg">'>, <Selector xpa
th='//img' data='<img src="image4_thumb.jpg">'>, <Selector xpath='//img' data='<img src="image5_thumb.jpg">'>]

#8、带变量的xpath
>>> response.xpath('//div[@id=$xxx]/a/text()',xxx='images').extract_first()
'Name: My image 1 '
>>> response.xpath('//div[count(a)=$yyy]/@id',yyy=5).extract_first() #求有5个a标签的div的id
'images'

选择器示例用法

 

云顶娱乐平台 16云顶娱乐平台 17

# -*- coding: utf-8 -*-
import scrapy
from scrapy.selector import HtmlXPathSelector
from scrapy.http.request import Request
from scrapy.http.cookies import CookieJar
from scrapy import FormRequest


class ChouTiSpider(scrapy.Spider):
    # 爬虫应用的名称,通过此名称启动爬虫命令
    name = "chouti"
    # 允许的域名
    allowed_domains = ["chouti.com"]

    cookie_dict = {}
    has_request_set = {}

    def start_requests(self):
        url = 'http://dig.chouti.com/'
        # return [Request(url=url, callback=self.login)]
        yield Request(url=url, callback=self.login)

    def login(self, response):
        cookie_jar = CookieJar()
        cookie_jar.extract_cookies(response, response.request)
        for k, v in cookie_jar._cookies.items():
            for i, j in v.items():
                for m, n in j.items():
                    self.cookie_dict[m] = n.value

        req = Request(
            url='http://dig.chouti.com/login',
            method='POST',
            headers={'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8'},
            body='phone=8615131255089&password=pppppppp&oneMonth=1',
            cookies=self.cookie_dict,
            callback=self.check_login
        )
        yield req

    def check_login(self, response):
        req = Request(
            url='http://dig.chouti.com/',
            method='GET',
            callback=self.show,
            cookies=self.cookie_dict,
            dont_filter=True
        )
        yield req

    def show(self, response):
        # print(response)
        hxs = HtmlXPathSelector(response)
        news_list = hxs.select('//div[@id="content-list"]/div[@class="item"]')
        for new in news_list:
            # temp = new.xpath('div/div[@class="part2"]/@share-linkid').extract()
            link_id = new.xpath('*/div[@class="part2"]/@share-linkid').extract_first()
            yield Request(
                url='http://dig.chouti.com/link/vote?linksId=%s' %(link_id,),
                method='POST',
                cookies=self.cookie_dict,
                callback=self.do_favor
            )

        page_list = hxs.select('//div[@id="dig_lcpage"]//a[re:test(@href, "/all/hot/recent/d+")]/@href').extract()
        for page in page_list:

            page_url = 'http://dig.chouti.com%s' % page
            import hashlib
            hash = hashlib.md5()
            hash.update(bytes(page_url,encoding='utf-8'))
            key = hash.hexdigest()
            if key in self.has_request_set:
                pass
            else:
                self.has_request_set[key] = page_url
                yield Request(
                    url=page_url,
                    method='GET',
                    callback=self.show
                )

    def do_favor(self, response):
        print(response.text)

示例:自动登陆抽屉并点赞

注意:settings.py中设置DEPTH_LIMIT =
1来指定“递归”的层数。

七 Items

#设置:$set

通常文档只会有一部分需要更新。可以使用原子性的更新修改器,指定对文档中的某些字段进行更新。
更新修改器是种特殊的键,用来指定复杂的更新操作,比如修改、增加后者删除

#1、update db1.user set  name="WXX" where id = 2
db.user.update({'_id':2},{"$set":{"name":"WXX",}})

#2、没有匹配成功则新增一条{"upsert":true}
db.user.update({'_id':6},{"$set":{"name":"egon","age":18}},{"upsert":true})

#3、默认只改匹配成功的第一条,{"multi":改多条}
db.user.update({'_id':{"$gt":4}},{"$set":{"age":28}})
db.user.update({'_id':{"$gt":4}},{"$set":{"age":38}},{"multi":true})

#4、修改内嵌文档,把名字为alex的人所在的地址国家改成Japan
db.user.update({'name':"alex"},{"$set":{"addr.country":"Japan"}})

#5、把名字为alex的人的地2个爱好改成piao
db.user.update({'name':"alex"},{"$set":{"hobbies.1":"piao"}})

#6、删除alex的爱好,$unset
db.user.update({'name':"alex"},{"$unset":{"hobbies":""}})

性能相关

在编写爬虫时,性能的消耗主要在IO请求中,当单进程单线程模式下请求URL时必然会引起等待,从而使得请求整体变慢。

云顶娱乐平台 18云顶娱乐平台 19

import requests

def fetch_async(url):
    response = requests.get(url)
    return response


url_list = ['http://www.github.com', 'http://www.bing.com']

for url in url_list:
    fetch_async(url)

1.同步执行

云顶娱乐平台 20云顶娱乐平台 21

from concurrent.futures import ThreadPoolExecutor
import requests


def fetch_async(url):
    response = requests.get(url)
    return response


url_list = ['http://www.github.com', 'http://www.bing.com']
pool = ThreadPoolExecutor(5)
for url in url_list:
    pool.submit(fetch_async, url)
pool.shutdown(wait=True)

2.多线程执行

云顶娱乐平台 22云顶娱乐平台 23

from concurrent.futures import ThreadPoolExecutor
import requests

def fetch_async(url):
    response = requests.get(url)
    return response


def callback(future):
    print(future.result())


url_list = ['http://www.github.com', 'http://www.bing.com']
pool = ThreadPoolExecutor(5)
for url in url_list:
    v = pool.submit(fetch_async, url)
    v.add_done_callback(callback)
pool.shutdown(wait=True)

2.多线程+回调函数执行

云顶娱乐平台 24云顶娱乐平台 25

from concurrent.futures import ProcessPoolExecutor
import requests

def fetch_async(url):
    response = requests.get(url)
    return response


url_list = ['http://www.github.com', 'http://www.bing.com']
pool = ProcessPoolExecutor(5)
for url in url_list:
    pool.submit(fetch_async, url)
pool.shutdown(wait=True)

3.多进程执行

云顶娱乐平台 26云顶娱乐平台 27

from concurrent.futures import ProcessPoolExecutor
import requests


def fetch_async(url):
    response = requests.get(url)
    return response


def callback(future):
    print(future.result())


url_list = ['http://www.github.com', 'http://www.bing.com']
pool = ProcessPoolExecutor(5)
for url in url_list:
    v = pool.submit(fetch_async, url)
    v.add_done_callback(callback)
pool.shutdown(wait=True)

3.多进程+回调函数执行

通过上述代码均可以完成对请求性能的提高,对于多线程和多进行的缺点是在IO阻塞时会造成了线程和进程的浪费,所以异步IO回事首选:

云顶娱乐平台 28云顶娱乐平台 29

import asyncio


@asyncio.coroutine
def func1():
    print('before...func1......')
    yield from asyncio.sleep(5)
    print('end...func1......')


tasks = [func1(), func1()]

loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.gather(*tasks))
loop.close()

1.asyncio示例1

云顶娱乐平台 30云顶娱乐平台 31

import asyncio


@asyncio.coroutine
def fetch_async(host, url='/'):
    print(host, url)
    reader, writer = yield from asyncio.open_connection(host, 80)

    request_header_content = """GET %s HTTP/1.0rnHost: %srnrn""" % (url, host,)
    request_header_content = bytes(request_header_content, encoding='utf-8')

    writer.write(request_header_content)
    yield from writer.drain()
    text = yield from reader.read()
    print(host, url, text)
    writer.close()

tasks = [
    fetch_async('www.cnblogs.com', '/wupeiqi/'),
    fetch_async('dig.chouti.com', '/pic/show?nid=4073644713430508&lid=10273091')
]

loop = asyncio.get_event_loop()
results = loop.run_until_complete(asyncio.gather(*tasks))
loop.close()

1.asyncio示例2

云顶娱乐平台 32云顶娱乐平台 33

import aiohttp
import asyncio


@asyncio.coroutine
def fetch_async(url):
    print(url)
    response = yield from aiohttp.request('GET', url)
    # data = yield from response.read()
    # print(url, data)
    print(url, response)
    response.close()


tasks = [fetch_async('http://www.google.com/'), fetch_async('http://www.chouti.com/')]

event_loop = asyncio.get_event_loop()
results = event_loop.run_until_complete(asyncio.gather(*tasks))
event_loop.close()

2.asyncio + aiohttp

云顶娱乐平台 34云顶娱乐平台 35

import asyncio
import requests


@asyncio.coroutine
def fetch_async(func, *args):
    loop = asyncio.get_event_loop()
    future = loop.run_in_executor(None, func, *args)
    response = yield from future
    print(response.url, response.content)


tasks = [
    fetch_async(requests.get, 'http://www.cnblogs.com/wupeiqi/'),
    fetch_async(requests.get, 'http://dig.chouti.com/pic/show?nid=4073644713430508&lid=10273091')
]

loop = asyncio.get_event_loop()
results = loop.run_until_complete(asyncio.gather(*tasks))
loop.close()

3.asyncio + requests

云顶娱乐平台 36云顶娱乐平台 37

import gevent

import requests
from gevent import monkey

monkey.patch_all()


def fetch_async(method, url, req_kwargs):
    print(method, url, req_kwargs)
    response = requests.request(method=method, url=url, **req_kwargs)
    print(response.url, response.content)

# ##### 发送请求 #####
gevent.joinall([
    gevent.spawn(fetch_async, method='get', url='https://www.python.org/', req_kwargs={}),
    gevent.spawn(fetch_async, method='get', url='https://www.yahoo.com/', req_kwargs={}),
    gevent.spawn(fetch_async, method='get', url='https://github.com/', req_kwargs={}),
])

# ##### 发送请求(协程池控制最大协程数量) #####
# from gevent.pool import Pool
# pool = Pool(None)
# gevent.joinall([
#     pool.spawn(fetch_async, method='get', url='https://www.python.org/', req_kwargs={}),
#     pool.spawn(fetch_async, method='get', url='https://www.yahoo.com/', req_kwargs={}),
#     pool.spawn(fetch_async, method='get', url='https://www.github.com/', req_kwargs={}),
# ])

4.gevent + requests

云顶娱乐平台 38云顶娱乐平台 39

import grequests


request_list = [
    grequests.get('http://httpbin.org/delay/1', timeout=0.001),
    grequests.get('http://fakedomain/'),
    grequests.get('http://httpbin.org/status/500')
]


# ##### 执行并获取响应列表 #####
# response_list = grequests.map(request_list)
# print(response_list)


# ##### 执行并获取响应列表(处理异常) #####
# def exception_handler(request, exception):
# print(request,exception)
#     print("Request failed")

# response_list = grequests.map(request_list, exception_handler=exception_handler)
# print(response_list)

5.grequests

云顶娱乐平台 40云顶娱乐平台 41

from twisted.web.client import getPage, defer
from twisted.internet import reactor


def all_done(arg):
    reactor.stop()


def callback(contents):
    print(contents)


deferred_list = []

url_list = ['http://www.bing.com', 'http://www.baidu.com', ]
for url in url_list:
    deferred = getPage(bytes(url, encoding='utf8'))
    deferred.addCallback(callback)
    deferred_list.append(deferred)

dlist = defer.DeferredList(deferred_list)
dlist.addBoth(all_done)

reactor.run()

6.Twisted示例

云顶娱乐平台 42云顶娱乐平台 43

from tornado.httpclient import AsyncHTTPClient
from tornado.httpclient import HTTPRequest
from tornado import ioloop


def handle_response(response):
    """
    处理返回值内容(需要维护计数器,来停止IO循环),调用 ioloop.IOLoop.current().stop()
    :param response: 
    :return: 
    """
    if response.error:
        print("Error:", response.error)
    else:
        print(response.body)


def func():
    url_list = [
        'http://www.baidu.com',
        'http://www.bing.com',
    ]
    for url in url_list:
        print(url)
        http_client = AsyncHTTPClient()
        http_client.fetch(HTTPRequest(url), handle_response)


ioloop.IOLoop.current().add_callback(func)
ioloop.IOLoop.current().start()

7.Tornado

云顶娱乐平台 44云顶娱乐平台 45

from twisted.internet import reactor
from twisted.web.client import getPage
import urllib.parse


def one_done(arg):
    print(arg)
    reactor.stop()

post_data = urllib.parse.urlencode({'check_data': 'adf'})
post_data = bytes(post_data, encoding='utf8')
headers = {b'Content-Type': b'application/x-www-form-urlencoded'}
response = getPage(bytes('http://dig.chouti.com/login', encoding='utf8'),
                   method=bytes('POST', encoding='utf8'),
                   postdata=post_data,
                   cookies={},
                   headers=headers)
response.addBoth(one_done)

reactor.run()

Twisted更多

以上均是Python内置以及第三方模块提供异步IO请求模块,使用简便大大提高效率,而对于异步IO请求的本质则是【非阻塞Socket】+【IO多路复用】:

云顶娱乐平台 46云顶娱乐平台 47

import select
import socket
import time


class AsyncTimeoutException(TimeoutError):
    """
    请求超时异常类
    """

    def __init__(self, msg):
        self.msg = msg
        super(AsyncTimeoutException, self).__init__(msg)


class HttpContext(object):
    """封装请求和相应的基本数据"""

    def __init__(self, sock, host, port, method, url, data, callback, timeout=5):
        """
        sock: 请求的客户端socket对象
        host: 请求的主机名
        port: 请求的端口
        port: 请求的端口
        method: 请求方式
        url: 请求的URL
        data: 请求时请求体中的数据
        callback: 请求完成后的回调函数
        timeout: 请求的超时时间
        """
        self.sock = sock
        self.callback = callback
        self.host = host
        self.port = port
        self.method = method
        self.url = url
        self.data = data

        self.timeout = timeout

        self.__start_time = time.time()
        self.__buffer = []

    def is_timeout(self):
        """当前请求是否已经超时"""
        current_time = time.time()
        if (self.__start_time + self.timeout) < current_time:
            return True

    def fileno(self):
        """请求sockect对象的文件描述符,用于select监听"""
        return self.sock.fileno()

    def write(self, data):
        """在buffer中写入响应内容"""
        self.__buffer.append(data)

    def finish(self, exc=None):
        """在buffer中写入响应内容完成,执行请求的回调函数"""
        if not exc:
            response = b''.join(self.__buffer)
            self.callback(self, response, exc)
        else:
            self.callback(self, None, exc)

    def send_request_data(self):
        content = """%s %s HTTP/1.0rnHost: %srnrn%s""" % (
            self.method.upper(), self.url, self.host, self.data,)

        return content.encode(encoding='utf8')


class AsyncRequest(object):
    def __init__(self):
        self.fds = []
        self.connections = []

    def add_request(self, host, port, method, url, data, callback, timeout):
        """创建一个要请求"""
        client = socket.socket()
        client.setblocking(False)
        try:
            client.connect((host, port))
        except BlockingIOError as e:
            pass
            # print('已经向远程发送连接的请求')
        req = HttpContext(client, host, port, method, url, data, callback, timeout)
        self.connections.append(req)
        self.fds.append(req)

    def check_conn_timeout(self):
        """检查所有的请求,是否有已经连接超时,如果有则终止"""
        timeout_list = []
        for context in self.connections:
            if context.is_timeout():
                timeout_list.append(context)
        for context in timeout_list:
            context.finish(AsyncTimeoutException('请求超时'))
            self.fds.remove(context)
            self.connections.remove(context)

    def running(self):
        """事件循环,用于检测请求的socket是否已经就绪,从而执行相关操作"""
        while True:
            r, w, e = select.select(self.fds, self.connections, self.fds, 0.05)

            if not self.fds:
                return

            for context in r:
                sock = context.sock
                while True:
                    try:
                        data = sock.recv(8096)
                        if not data:
                            self.fds.remove(context)
                            context.finish()
                            break
                        else:
                            context.write(data)
                    except BlockingIOError as e:
                        break
                    except TimeoutError as e:
                        self.fds.remove(context)
                        self.connections.remove(context)
                        context.finish(e)
                        break

            for context in w:
                # 已经连接成功远程服务器,开始向远程发送请求数据
                if context in self.fds:
                    data = context.send_request_data()
                    context.sock.sendall(data)
                    self.connections.remove(context)

            self.check_conn_timeout()


if __name__ == '__main__':
    def callback_func(context, response, ex):
        """
        :param context: HttpContext对象,内部封装了请求相关信息
        :param response: 请求响应内容
        :param ex: 是否出现异常(如果有异常则值为异常对象;否则值为None)
        :return:
        """
        print(context, response, ex)

    obj = AsyncRequest()
    url_list = [
        {'host': 'www.google.com', 'port': 80, 'method': 'GET', 'url': '/', 'data': '', 'timeout': 5,
         'callback': callback_func},
        {'host': 'www.baidu.com', 'port': 80, 'method': 'GET', 'url': '/', 'data': '', 'timeout': 5,
         'callback': callback_func},
        {'host': 'www.bing.com', 'port': 80, 'method': 'GET', 'url': '/', 'data': '', 'timeout': 5,
         'callback': callback_func},
    ]
    for item in url_list:
        print(item)
        obj.add_request(**item)

    obj.running()

史上最牛逼的异步IO模块

六 Selectors

1 //与/
2 text
3、extract与extract_first:从selector对象中解出内容
4、属性:xpath的属性加前缀@
5、嵌套查找
6、设置默认值
7、按照属性查找
8、按照属性模糊查找
9、正则表达式
10、xpath相对路径
11、带变量的xpath

云顶娱乐平台 48云顶娱乐平台 49

response.selector.css()
response.selector.xpath()
可简写为
response.css()
response.xpath()

#1 //与/
response.xpath('//body/a/')#
response.css('div a::text')

>>> response.xpath('//body/a') #开头的//代表从整篇文档中寻找,body之后的/代表body的儿子
[]
>>> response.xpath('//body//a') #开头的//代表从整篇文档中寻找,body之后的//代表body的子子孙孙
[<Selector xpath='//body//a' data='<a href="image1.html">Name: My image 1 <'>, <Selector xpath='//body//a' data='<a href="image2.html">Name: My image 2 <'>, <Selector xpath='//body//a' data='<a href="
image3.html">Name: My image 3 <'>, <Selector xpath='//body//a' data='<a href="image4.html">Name: My image 4 <'>, <Selector xpath='//body//a' data='<a href="image5.html">Name: My image 5 <'>]

#2 text
>>> response.xpath('//body//a/text()')
>>> response.css('body a::text')

#3、extract与extract_first:从selector对象中解出内容
>>> response.xpath('//div/a/text()').extract()
['Name: My image 1 ', 'Name: My image 2 ', 'Name: My image 3 ', 'Name: My image 4 ', 'Name: My image 5 ']
>>> response.css('div a::text').extract()
['Name: My image 1 ', 'Name: My image 2 ', 'Name: My image 3 ', 'Name: My image 4 ', 'Name: My image 5 ']

>>> response.xpath('//div/a/text()').extract_first()
'Name: My image 1 '
>>> response.css('div a::text').extract_first()
'Name: My image 1 '

#4、属性:xpath的属性加前缀@
>>> response.xpath('//div/a/@href').extract_first()
'image1.html'
>>> response.css('div a::attr(href)').extract_first()
'image1.html'

#4、嵌套查找
>>> response.xpath('//div').css('a').xpath('@href').extract_first()
'image1.html'

#5、设置默认值
>>> response.xpath('//div[@id="xxx"]').extract_first(default="not found")
'not found'

#4、按照属性查找
response.xpath('//div[@id="images"]/a[@href="image3.html"]/text()').extract()
response.css('#images a[@href="image3.html"]/text()').extract()

#5、按照属性模糊查找
response.xpath('//a[contains(@href,"image")]/@href').extract()
response.css('a[href*="image"]::attr(href)').extract()

response.xpath('//a[contains(@href,"image")]/img/@src').extract()
response.css('a[href*="imag"] img::attr(src)').extract()

response.xpath('//*[@href="image1.html"]')
response.css('*[href="image1.html"]')

#6、正则表达式
response.xpath('//a/text()').re(r'Name: (.*)')
response.xpath('//a/text()').re_first(r'Name: (.*)')

#7、xpath相对路径
>>> res=response.xpath('//a[contains(@href,"3")]')[0]
>>> res.xpath('img')
[<Selector xpath='img' data='<img src="image3_thumb.jpg">'>]
>>> res.xpath('./img')
[<Selector xpath='./img' data='<img src="image3_thumb.jpg">'>]
>>> res.xpath('.//img')
[<Selector xpath='.//img' data='<img src="image3_thumb.jpg">'>]
>>> res.xpath('//img') #这就是从头开始扫描
[<Selector xpath='//img' data='<img src="image1_thumb.jpg">'>, <Selector xpath='//img' data='<img src="image2_thumb.jpg">'>, <Selector xpath='//img' data='<img src="image3_thumb.jpg">'>, <Selector xpa
th='//img' data='<img src="image4_thumb.jpg">'>, <Selector xpath='//img' data='<img src="image5_thumb.jpg">'>]

#8、带变量的xpath
>>> response.xpath('//div[@id=$xxx]/a/text()',xxx='images').extract_first()
'Name: My image 1 '
>>> response.xpath('//div[count(a)=$yyy]/@id',yyy=5).extract_first() #求有5个a标签的div的id
'images'

View Code

   d、文档操作

一、安装

#Windows平台
    1、pip3 install wheel #安装后,便支持通过wheel文件安装软件,wheel文件官网:https://www.lfd.uci.edu/~gohlke/pythonlibs
    3、pip3 install lxml
    4、pip3 install pyopenssl
    5、下载并安装pywin32:https://sourceforge.net/projects/pywin32/files/pywin32/
    6、下载twisted的wheel文件:http://www.lfd.uci.edu/~gohlke/pythonlibs/#twisted
    7、执行pip3 install 下载目录Twisted-17.9.0-cp36-cp36m-win_amd64.whl
    8、pip3 install scrapy

#Linux平台
    1、pip3 install scrapy

 

十二 settings.py

#==>第一部分:基本配置<===
#1、项目名称,默认的USER_AGENT由它来构成,也作为日志记录的日志名
BOT_NAME = 'Amazon'

#2、爬虫应用路径
SPIDER_MODULES = ['Amazon.spiders']
NEWSPIDER_MODULE = 'Amazon.spiders'

#3、客户端User-Agent请求头
#USER_AGENT = 'Amazon (+http://www.yourdomain.com)'

#4、是否遵循爬虫协议
# Obey robots.txt rules
ROBOTSTXT_OBEY = False

#5、是否支持cookie,cookiejar进行操作cookie,默认开启
#COOKIES_ENABLED = False

#6、Telnet用于查看当前爬虫的信息,操作爬虫等...使用telnet ip port ,然后通过命令操作
#TELNETCONSOLE_ENABLED = False
#TELNETCONSOLE_HOST = '127.0.0.1'
#TELNETCONSOLE_PORT = [6023,]

#7、Scrapy发送HTTP请求默认使用的请求头
#DEFAULT_REQUEST_HEADERS = {
#   'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
#   'Accept-Language': 'en',
#}



#===>第二部分:并发与延迟<===
#1、下载器总共最大处理的并发请求数,默认值16
#CONCURRENT_REQUESTS = 32

#2、每个域名能够被执行的最大并发请求数目,默认值8
#CONCURRENT_REQUESTS_PER_DOMAIN = 16

#3、能够被单个IP处理的并发请求数,默认值0,代表无限制,需要注意两点
#I、如果不为零,那CONCURRENT_REQUESTS_PER_DOMAIN将被忽略,即并发数的限制是按照每个IP来计算,而不是每个域名
#II、该设置也影响DOWNLOAD_DELAY,如果该值不为零,那么DOWNLOAD_DELAY下载延迟是限制每个IP而不是每个域
#CONCURRENT_REQUESTS_PER_IP = 16

#4、如果没有开启智能限速,这个值就代表一个规定死的值,代表对同一网址延迟请求的秒数
#DOWNLOAD_DELAY = 3


#===>第三部分:智能限速/自动节流:AutoThrottle extension<===
#一:介绍
from scrapy.contrib.throttle import AutoThrottle #http://scrapy.readthedocs.io/en/latest/topics/autothrottle.html#topics-autothrottle
设置目标:
1、比使用默认的下载延迟对站点更好
2、自动调整scrapy到最佳的爬取速度,所以用户无需自己调整下载延迟到最佳状态。用户只需要定义允许最大并发的请求,剩下的事情由该扩展组件自动完成


#二:如何实现?
在Scrapy中,下载延迟是通过计算建立TCP连接到接收到HTTP包头(header)之间的时间来测量的。
注意,由于Scrapy可能在忙着处理spider的回调函数或者无法下载,因此在合作的多任务环境下准确测量这些延迟是十分苦难的。 不过,这些延迟仍然是对Scrapy(甚至是服务器)繁忙程度的合理测量,而这扩展就是以此为前提进行编写的。


#三:限速算法
自动限速算法基于以下规则调整下载延迟
#1、spiders开始时的下载延迟是基于AUTOTHROTTLE_START_DELAY的值
#2、当收到一个response,对目标站点的下载延迟=收到响应的延迟时间/AUTOTHROTTLE_TARGET_CONCURRENCY
#3、下一次请求的下载延迟就被设置成:对目标站点下载延迟时间和过去的下载延迟时间的平均值
#4、没有达到200个response则不允许降低延迟
#5、下载延迟不能变的比DOWNLOAD_DELAY更低或者比AUTOTHROTTLE_MAX_DELAY更高

#四:配置使用
#开启True,默认False
AUTOTHROTTLE_ENABLED = True
#起始的延迟
AUTOTHROTTLE_START_DELAY = 5
#最小延迟
DOWNLOAD_DELAY = 3
#最大延迟
AUTOTHROTTLE_MAX_DELAY = 10
#每秒并发请求数的平均值,不能高于 CONCURRENT_REQUESTS_PER_DOMAIN或CONCURRENT_REQUESTS_PER_IP,调高了则吞吐量增大强奸目标站点,调低了则对目标站点更加”礼貌“
#每个特定的时间点,scrapy并发请求的数目都可能高于或低于该值,这是爬虫视图达到的建议值而不是硬限制
AUTOTHROTTLE_TARGET_CONCURRENCY = 16.0
#调试
AUTOTHROTTLE_DEBUG = True
CONCURRENT_REQUESTS_PER_DOMAIN = 16
CONCURRENT_REQUESTS_PER_IP = 16



#===>第四部分:爬取深度与爬取方式<===
#1、爬虫允许的最大深度,可以通过meta查看当前深度;0表示无深度
# DEPTH_LIMIT = 3

#2、爬取时,0表示深度优先Lifo(默认);1表示广度优先FiFo

# 后进先出,深度优先
# DEPTH_PRIORITY = 0
# SCHEDULER_DISK_QUEUE = 'scrapy.squeue.PickleLifoDiskQueue'
# SCHEDULER_MEMORY_QUEUE = 'scrapy.squeue.LifoMemoryQueue'
# 先进先出,广度优先

# DEPTH_PRIORITY = 1
# SCHEDULER_DISK_QUEUE = 'scrapy.squeue.PickleFifoDiskQueue'
# SCHEDULER_MEMORY_QUEUE = 'scrapy.squeue.FifoMemoryQueue'


#3、调度器队列
# SCHEDULER = 'scrapy.core.scheduler.Scheduler'
# from scrapy.core.scheduler import Scheduler

#4、访问URL去重
# DUPEFILTER_CLASS = 'step8_king.duplication.RepeatUrl'



#===>第五部分:中间件、Pipelines、扩展<===
#1、Enable or disable spider middlewares
# See http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html
#SPIDER_MIDDLEWARES = {
#    'Amazon.middlewares.AmazonSpiderMiddleware': 543,
#}

#2、Enable or disable downloader middlewares
# See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html
DOWNLOADER_MIDDLEWARES = {
   # 'Amazon.middlewares.DownMiddleware1': 543,
}

#3、Enable or disable extensions
# See http://scrapy.readthedocs.org/en/latest/topics/extensions.html
#EXTENSIONS = {
#    'scrapy.extensions.telnet.TelnetConsole': None,
#}

#4、Configure item pipelines
# See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {
   # 'Amazon.pipelines.CustomPipeline': 200,
}



#===>第六部分:缓存<===
"""
1. 启用缓存
    目的用于将已经发送的请求或相应缓存下来,以便以后使用

    from scrapy.downloadermiddlewares.httpcache import HttpCacheMiddleware
    from scrapy.extensions.httpcache import DummyPolicy
    from scrapy.extensions.httpcache import FilesystemCacheStorage
"""
# 是否启用缓存策略
# HTTPCACHE_ENABLED = True

# 缓存策略:所有请求均缓存,下次在请求直接访问原来的缓存即可
# HTTPCACHE_POLICY = "scrapy.extensions.httpcache.DummyPolicy"
# 缓存策略:根据Http响应头:Cache-Control、Last-Modified 等进行缓存的策略
# HTTPCACHE_POLICY = "scrapy.extensions.httpcache.RFC2616Policy"

# 缓存超时时间
# HTTPCACHE_EXPIRATION_SECS = 0

# 缓存保存路径
# HTTPCACHE_DIR = 'httpcache'

# 缓存忽略的Http状态码
# HTTPCACHE_IGNORE_HTTP_CODES = []

# 缓存存储的插件
# HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'


#===>第七部分:线程池<===
REACTOR_THREADPOOL_MAXSIZE = 10

#Default: 10
#scrapy基于twisted异步IO框架,downloader是多线程的,线程数是Twisted线程池的默认大小(The maximum limit for Twisted Reactor thread pool size.)

#关于twisted线程池:
http://twistedmatrix.com/documents/10.1.0/core/howto/threading.html

#线程池实现:twisted.python.threadpool.ThreadPool
twisted调整线程池大小:
from twisted.internet import reactor
reactor.suggestThreadPoolSize(30)

#scrapy相关源码:
D:python3.6Libsite-packagesscrapycrawler.py

#补充:
windows下查看进程内线程数的工具:
    https://docs.microsoft.com/zh-cn/sysinternals/downloads/pslist
    或
    https://pan.baidu.com/s/1jJ0pMaM

    命令为:
    pslist |findstr python

linux下:top -p 进程id


#===>第八部分:其他默认配置参考<===
D:python3.6Libsite-packagesscrapysettingsdefault_settings.py

settings.py

 
  d、强调:把数据库名添加到集合名前,得到集合的完全限定名,即命名空间

一 介绍

    Scrapy一个开源和协作的框架,其最初是为了页面抓取 (更确切来说,
网络抓取
)所设计的,使用它可以以快速、简单、可扩展的方式从网站中提取所需的数据。但目前Scrapy的用途十分广泛,可用于如数据挖掘、监测和自动化测试等领域,也可以应用在获取API所返回的数据(例如
Amazon Associates Web Services ) 或者通用的网络爬虫。

    Scrapy
是基于twisted框架开发而来,twisted是一个流行的事件驱动的python网络框架。因此Scrapy使用了一种非阻塞(又名异步)的代码来实现并发。整体架构大致如下Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。
其可以应用在数据挖掘,信息处理或存储历史数据等一系列的程序中。

Scrapy 使用了 Twisted异步网络库来处理网络通讯。整体架构大致如下

云顶娱乐平台 50

Scrapy主要包括了以下组件:

  • 引擎(Scrapy)
    用来处理整个系统的数据流处理, 触发事务(框架核心)
  • 调度器(Scheduler)
    用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回.
    可以想像成一个URL(抓取网页的网址或者说是链接)的优先队列,
    由它来决定下一个要抓取的网址是什么, 同时去除重复的网址
  • 下载器(Downloader)
    用于下载网页内容,
    并将网页内容返回给蜘蛛(Scrapy下载器是建立在twisted这个高效的异步模型上的)
  • 爬虫(Spiders)
    爬虫是主要干活的, 用于从特定的网页中提取自己需要的信息,
    即所谓的实体(Item)。用户也可以从中提取出链接,让Scrapy继续抓取下一个页面
  • 项目管道(Pipeline)
    负责处理爬虫从网页中抽取的实体,主要的功能是持久化实体、验证实体的有效性、清除不需要的信息。当页面被爬虫解析后,将被发送到项目管道,并经过几个特定的次序处理数据。
  • 下载器中间件(Downloader Middlewares)
    位于Scrapy引擎和下载器之间的框架,主要是处理Scrapy引擎与下载器之间的请求及响应。
  • 爬虫中间件(Spider Middlewares)
    介于Scrapy引擎和爬虫之间的框架,主要工作是处理蜘蛛的响应输入和请求输出。
  • 调度中间件(Scheduler Middewares)
    介于Scrapy引擎和调度之间的中间件,从Scrapy引擎发送到调度的请求和响应。

Scrapy运行流程大概如下:

  1. 引擎从调度器中取出一个链接(URL)用于接下来的抓取
  2. 引擎把URL封装成一个请求(Request)传给下载器
  3. 下载器把资源下载下来,并封装成应答包(Response)
  4. 爬虫解析Response
  5. 解析出实体(Item),则交给实体管道进行进一步的处理
  6. 解析出的是链接(URL),则把URL交给调度器等待抓取

二 安装

#Windows平台
    1、pip3 install wheel #安装后,便支持通过wheel文件安装软件,wheel文件官网:https://www.lfd.uci.edu/~gohlke/pythonlibs
    3、pip3 install lxml
    4、pip3 install pyopenssl
    5、下载并安装pywin32:https://sourceforge.net/projects/pywin32/files/pywin32/
    6、下载twisted的wheel文件:http://www.lfd.uci.edu/~gohlke/pythonlibs/#twisted
    7、执行pip3 install 下载目录Twisted-17.9.0-cp36-cp36m-win_amd64.whl
    8、pip3 install scrapy

#Linux平台
    1、pip3 install scrapy

 三 命令行工具

#1 查看帮助
    scrapy -h
    scrapy <command> -h

#2 有两种命令:其中Project-only必须切到项目文件夹下才能执行,而Global的命令则不需要
    Global commands:
        startproject #创建项目
        genspider    #创建爬虫程序
        settings     #如果是在项目目录下,则得到的是该项目的配置
        runspider    #运行一个独立的python文件,不必创建项目
        shell        #scrapy shell url地址  在交互式调试,如选择器规则正确与否
        fetch        #独立于程单纯地爬取一个页面,可以拿到请求头
        view         #下载完毕后直接弹出浏览器,以此可以分辨出哪些数据是ajax请求
        version      #scrapy version 查看scrapy的版本,scrapy version -v查看scrapy依赖库的版本
    Project-only commands:
        crawl        #运行爬虫,必须创建项目才行,确保配置文件中ROBOTSTXT_OBEY = False
        check        #检测项目中有无语法错误
        list         #列出项目中所包含的爬虫名
        edit         #编辑器,一般不用
        parse        #scrapy parse url地址 --callback 回调函数  #以此可以验证我们的回调函数是否正确
        bench        #scrapy bentch压力测试

#3 官网链接
    https://docs.scrapy.org/en/latest/topics/commands.html

 

#1、执行全局命令:请确保不在某个项目的目录下,排除受该项目配置的影响
scrapy startproject MyProject

cd MyProject
scrapy genspider baidu www.baidu.com

scrapy settings --get XXX #如果切换到项目目录下,看到的则是该项目的配置

scrapy runspider baidu.py

scrapy shell https://www.baidu.com
    response
    response.status
    response.body
    view(response)

scrapy view https://www.taobao.com #如果页面显示内容不全,不全的内容则是ajax请求实现的,以此快速定位问题

scrapy fetch --nolog --headers https://www.taobao.com

scrapy version #scrapy的版本

scrapy version -v #依赖库的版本


#2、执行项目命令:切到项目目录下
scrapy crawl baidu
scrapy check
scrapy list
scrapy parse http://quotes.toscrape.com/ --callback parse
scrapy bench

 四 项目结构以及爬虫应用简介

project_name/
   scrapy.cfg
   project_name/
       __init__.py
       items.py
       pipelines.py
       settings.py
       spiders/
           __init__.py
           爬虫1.py
           爬虫2.py
           爬虫3.py

 

文件说明:

  • scrapy.cfg
     项目的主配置信息,用来部署scrapy时使用,爬虫相关的配置信息在settings.py文件中。
  • items.py    设置数据存储模板,用于结构化数据,如:Django的Model
  • pipelines    数据处理行为,如:一般结构化的数据持久化
  • settings.py
    配置文件,如:递归的层数、并发数,延迟下载等。强调:配置文件的选项必须大写否则视为无效,正确写法USER_AGENT=’xxxx’
  • spiders      爬虫目录,如:创建文件,编写爬虫规则

注意:一般创建爬虫文件时,以网站域名命名

默认只能在cmd中执行爬虫,如果想在pycharm中执行需要做

#在项目目录下新建:entrypoint.py
from scrapy.cmdline import execute
execute(['scrapy', 'crawl', 'xiaohua'])

 关于windows编码

import sys,os
sys.stdout=io.TextIOWrapper(sys.stdout.buffer,encoding='gb18030')

 五 Spiders

1、介绍

#1、Spiders是由一系列类(定义了一个网址或一组网址将被爬取)组成,具体包括如何执行爬取任务并且如何从页面中提取结构化的数据。

#2、换句话说,Spiders是你为了一个特定的网址或一组网址自定义爬取和解析页面行为的地方

2、Spiders会循环做如下事情

#1、生成初始的Requests来爬取第一个URLS,并且标识一个回调函数
第一个请求定义在start_requests()方法内默认从start_urls列表中获得url地址来生成Request请求,默认的回调函数是parse方法。回调函数在下载完成返回response时自动触发

#2、在回调函数中,解析response并且返回值
返回值可以4种:
        包含解析数据的字典
        Item对象
        新的Request对象(新的Requests也需要指定一个回调函数)
        或者是可迭代对象(包含Items或Request)

#3、在回调函数中解析页面内容
通常使用Scrapy自带的Selectors,但很明显你也可以使用Beutifulsoup,lxml或其他你爱用啥用啥。

#4、最后,针对返回的Items对象将会被持久化到数据库
通过Item Pipeline组件存到数据库:https://docs.scrapy.org/en/latest/topics/item-pipeline.html#topics-item-pipeline)
或者导出到不同的文件(通过Feed exports:https://docs.scrapy.org/en/latest/topics/feed-exports.html#topics-feed-exports)

 3、Spiders总共提供了五种类:

1、scrapy.spiders.Spider #scrapy.Spider等同于scrapy.spiders.Spider
2、scrapy.spiders.CrawlSpider
3、scrapy.spiders.XMLFeedSpider
4、scrapy.spiders.CSVFeedSpider
5、scrapy.spiders.SitemapSpider

 4、导入使用

# -*- coding: utf-8 -*-
import scrapy
from scrapy.spiders import Spider,CrawlSpider,XMLFeedSpider,CSVFeedSpider,SitemapSpider

class AmazonSpider(scrapy.Spider): #自定义类,继承Spiders提供的基类
    name = 'amazon'
    allowed_domains = ['www.amazon.cn']
    start_urls = ['http://www.amazon.cn/']

    def parse(self, response):
        pass

5、class scrapy.spiders.Spider

这是最简单的spider类,任何其他的spider类都需要继承它(包含你自己定义的)。

该类不提供任何特殊的功能,它仅提供了一个默认的start_requests方法默认从start_urls中读取url地址发送requests请求,并且默认parse作为回调函数

class AmazonSpider(scrapy.Spider):
    name = 'amazon' 

    allowed_domains = ['www.amazon.cn'] 

    start_urls = ['http://www.amazon.cn/']

    custom_settings = {
        'BOT_NAME' : 'Egon_Spider_Amazon',
        'REQUEST_HEADERS' : {
          'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
          'Accept-Language': 'en',
        }
    }

    def parse(self, response):
        pass

云顶娱乐平台 51云顶娱乐平台 52

#1、name = 'amazon' 
定义爬虫名,scrapy会根据该值定位爬虫程序
所以它必须要有且必须唯一(In Python 2 this must be ASCII only.)

#2、allowed_domains = ['www.amazon.cn'] 
定义允许爬取的域名,如果OffsiteMiddleware启动(默认就启动),
那么不属于该列表的域名及其子域名都不允许爬取
如果爬取的网址为:https://www.example.com/1.html,那就添加'example.com'到列表.

#3、start_urls = ['http://www.amazon.cn/']
如果没有指定url,就从该列表中读取url来生成第一个请求

#4、custom_settings
值为一个字典,定义一些配置信息,在运行爬虫程序时,这些配置会覆盖项目级别的配置
所以custom_settings必须被定义成一个类属性,由于settings会在类实例化前被加载

#5、settings
通过self.settings['配置项的名字']可以访问settings.py中的配置,如果自己定义了custom_settings还是以自己的为准

#6、logger
日志名默认为spider的名字
self.logger.debug('=============>%s' %self.settings['BOT_NAME'])

#5、crawler:了解
该属性必须被定义到类方法from_crawler中

#6、from_crawler(crawler, *args, **kwargs):了解
You probably won’t need to override this directly  because the default implementation acts as a proxy to the __init__() method, calling it with the given arguments args and named arguments kwargs.

#7、start_requests()
该方法用来发起第一个Requests请求,且必须返回一个可迭代的对象。它在爬虫程序打开时就被Scrapy调用,Scrapy只调用它一次。
默认从start_urls里取出每个url来生成Request(url, dont_filter=True)

#针对参数dont_filter,请看自定义去重规则

如果你想要改变起始爬取的Requests,你就需要覆盖这个方法,例如你想要起始发送一个POST请求,如下
class MySpider(scrapy.Spider):
    name = 'myspider'

    def start_requests(self):
        return [scrapy.FormRequest("http://www.example.com/login",
                                   formdata={'user': 'john', 'pass': 'secret'},
                                   callback=self.logged_in)]

    def logged_in(self, response):
        # here you would extract links to follow and return Requests for
        # each of them, with another callback
        pass

#8、parse(response)
这是默认的回调函数,所有的回调函数必须返回an iterable of Request and/or dicts or Item objects.

#9、log(message[, level, component]):了解
Wrapper that sends a log message through the Spider’s logger, kept for backwards compatibility. For more information see Logging from Spiders.

#10、closed(reason)
爬虫程序结束时自动触发

定制scrapy.spider属性与方法详解

定制scrapy.spider属性与方法详解

云顶娱乐平台 53云顶娱乐平台 54

去重规则应该多个爬虫共享的,但凡一个爬虫爬取了,其他都不要爬了,实现方式如下

#方法一:
1、新增类属性
visited=set() #类属性

2、回调函数parse方法内:
def parse(self, response):
    if response.url in self.visited:
        return None
    .......

    self.visited.add(response.url) 

#方法一改进:针对url可能过长,所以我们存放url的hash值
def parse(self, response):
        url=md5(response.request.url)
    if url in self.visited:
        return None
    .......

    self.visited.add(url) 

#方法二:Scrapy自带去重功能
配置文件:
DUPEFILTER_CLASS = 'scrapy.dupefilter.RFPDupeFilter' #默认的去重规则帮我们去重,去重规则在内存中
DUPEFILTER_DEBUG = False
JOBDIR = "保存范文记录的日志路径,如:/root/"  # 最终路径为 /root/requests.seen,去重规则放文件中

scrapy自带去重规则默认为RFPDupeFilter,只需要我们指定
Request(...,dont_filter=False) ,如果dont_filter=True则告诉Scrapy这个URL不参与去重。

#方法三:
我们也可以仿照RFPDupeFilter自定义去重规则,

from scrapy.dupefilter import RFPDupeFilter,看源码,仿照BaseDupeFilter

#步骤一:在项目目录下自定义去重文件dup.py
class UrlFilter(object):
    def __init__(self):
        self.visited = set() #或者放到数据库

    @classmethod
    def from_settings(cls, settings):
        return cls()

    def request_seen(self, request):
        if request.url in self.visited:
            return True
        self.visited.add(request.url)

    def open(self):  # can return deferred
        pass

    def close(self, reason):  # can return a deferred
        pass

    def log(self, request, spider):  # log that a request has been filtered
        pass

#步骤二:配置文件settings.py:
DUPEFILTER_CLASS = '项目名.dup.UrlFilter'


# 源码分析:
from scrapy.core.scheduler import Scheduler
见Scheduler下的enqueue_request方法:self.df.request_seen(request)

去重规则:去除重复的url

去重规则:去除重复的url

云顶娱乐平台 55云顶娱乐平台 56

#例一:
import scrapy

class MySpider(scrapy.Spider):
    name = 'example.com'
    allowed_domains = ['example.com']
    start_urls = [
        'http://www.example.com/1.html',
        'http://www.example.com/2.html',
        'http://www.example.com/3.html',
    ]

    def parse(self, response):
        self.logger.info('A response from %s just arrived!', response.url)


#例二:一个回调函数返回多个Requests和Items
import scrapy

class MySpider(scrapy.Spider):
    name = 'example.com'
    allowed_domains = ['example.com']
    start_urls = [
        'http://www.example.com/1.html',
        'http://www.example.com/2.html',
        'http://www.example.com/3.html',
    ]

    def parse(self, response):
        for h3 in response.xpath('//h3').extract():
            yield {"title": h3}

        for url in response.xpath('//a/@href').extract():
            yield scrapy.Request(url, callback=self.parse)


#例三:在start_requests()内直接指定起始爬取的urls,start_urls就没有用了,

import scrapy
from myproject.items import MyItem

class MySpider(scrapy.Spider):
    name = 'example.com'
    allowed_domains = ['example.com']

    def start_requests(self):
        yield scrapy.Request('http://www.example.com/1.html', self.parse)
        yield scrapy.Request('http://www.example.com/2.html', self.parse)
        yield scrapy.Request('http://www.example.com/3.html', self.parse)

    def parse(self, response):
        for h3 in response.xpath('//h3').extract():
            yield MyItem(title=h3)

        for url in response.xpath('//a/@href').extract():
            yield scrapy.Request(url, callback=self.parse)

例子

例:

云顶娱乐平台 57云顶娱乐平台 58

我们可能需要在命令行为爬虫程序传递参数,比如传递初始的url,像这样
#命令行执行
scrapy crawl myspider -a category=electronics

#在__init__方法中可以接收外部传进来的参数
import scrapy

class MySpider(scrapy.Spider):
    name = 'myspider'

    def __init__(self, category=None, *args, **kwargs):
        super(MySpider, self).__init__(*args, **kwargs)
        self.start_urls = ['http://www.example.com/categories/%s' % category]
        #...


#注意接收的参数全都是字符串,如果想要结构化的数据,你需要用类似json.loads的方法

参数传递

参数传递

6、其他通用Spiders:https://docs.scrapy.org/en/latest/topics/spiders.html#generic-spiders

云顶娱乐平台 59云顶娱乐平台 60

二、基本使用

十一 自定义扩展

自定义扩展(与django的信号类似)
    1、django的信号是django是预留的扩展,信号一旦被触发,相应的功能就会执行
    2、scrapy自定义扩展的好处是可以在任意我们想要的位置添加功能,而其他组件中提供的功能只能在规定的位置执行

云顶娱乐平台 61云顶娱乐平台 62

#1、在与settings同级目录下新建一个文件,文件名可以为extentions.py,内容如下
from scrapy import signals


class MyExtension(object):
    def __init__(self, value):
        self.value = value

    @classmethod
    def from_crawler(cls, crawler):
        val = crawler.settings.getint('MMMM')
        obj = cls(val)

        crawler.signals.connect(obj.spider_opened, signal=signals.spider_opened)
        crawler.signals.connect(obj.spider_closed, signal=signals.spider_closed)

        return obj

    def spider_opened(self, spider):
        print('=============>open')

    def spider_closed(self, spider):
        print('=============>close')

#2、配置生效
EXTENSIONS = {
    "Amazon.extentions.MyExtension":200
}

View Code

#注意:除非是删除,否则_id是始终不会变的
#1、覆盖式:
db.user.update({'age':20},{"name":"Wxx","hobbies_count":3})
是用{"_id":2,"name":"Wxx","hobbies_count":3}覆盖原来的记录

#2、一种最简单的更新就是用一个新的文档完全替换匹配的文档。这适用于大规模式迁移的情况。例如
var obj=db.user.findOne({"_id":2})

obj.username=obj.name+'SB'
obj.hobbies_count++
delete obj.age

db.user.update({"_id":2},obj)

5 Spiders

云顶娱乐平台 63云顶娱乐平台 64

#在项目目录下新建:entrypoint.py
from scrapy.cmdline import execute
execute(['scrapy', 'crawl', 'xiaohua'])

默认只能在cmd中执行爬虫,如果想在pycharm中执行需要做

强调:配置文件的选项必须是大写,如X=’1′

云顶娱乐平台 65云顶娱乐平台 66

# -*- coding: utf-8 -*-
import scrapy
from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule


class BaiduSpider(CrawlSpider):
    name = 'xiaohua'
    allowed_domains = ['www.xiaohuar.com']
    start_urls = ['http://www.xiaohuar.com/v/']
    # download_delay = 1

    rules = (
        Rule(LinkExtractor(allow=r'p-d-d+.html$'), callback='parse_item',follow=True,),
    )


    def parse_item(self, response):

        if url:
            print('======下载视频==============================', url)
            yield scrapy.Request(url,callback=self.save)



    def save(self,response):
        print('======保存视频==============================',response.url,len(response.body))

        import time
        import hashlib
        m=hashlib.md5()
        m.update(str(time.time()).encode('utf-8'))
        m.update(response.url.encode('utf-8'))

        filename=r'E:\mv\%s.mp4' %m.hexdigest()
        with open(filename,'wb') as f:
            f.write(response.body)

模版:CrawlSpider

三. 格式化处理

上述实例只是简单的处理,所以在parse方法中直接处理。如果对于想要获取更多的数据处理,则可以利用Scrapy的items将数据格式化,然后统一交由pipelines来处理。

云顶娱乐平台 67云顶娱乐平台 68

import scrapy
from scrapy.selector import HtmlXPathSelector
from scrapy.http.request import Request
from scrapy.http.cookies import CookieJar
from scrapy import FormRequest


class XiaoHuarSpider(scrapy.Spider):
    # 爬虫应用的名称,通过此名称启动爬虫命令
    name = "xiaohuar"
    # 允许的域名
    allowed_domains = ["xiaohuar.com"]

    start_urls = [
        "http://www.xiaohuar.com/list-1-1.html",
    ]
    # custom_settings = {
    #     'ITEM_PIPELINES':{
    #         'spider1.pipelines.JsonPipeline': 100
    #     }
    # }
    has_request_set = {}

    def parse(self, response):
        # 分析页面
        # 找到页面中符合规则的内容(校花图片),保存
        # 找到所有的a标签,再访问其他a标签,一层一层的搞下去

        hxs = HtmlXPathSelector(response)

        items = hxs.select('//div[@class="item_list infinite_scroll"]/div')
        for item in items:
            src = item.select('.//div[@class="img"]/a/img/@src').extract_first()
            name = item.select('.//div[@class="img"]/span/text()').extract_first()
            school = item.select('.//div[@class="img"]/div[@class="btns"]/a/text()').extract_first()
            url = "http://www.xiaohuar.com%s" % src
            from ..items import XiaoHuarItem
            obj = XiaoHuarItem(name=name, school=school, url=url)
            yield obj

        urls = hxs.select('//a[re:test(@href, "http://www.xiaohuar.com/list-1-d+.html")]/@href')
        for url in urls:
            key = self.md5(url)
            if key in self.has_request_set:
                pass
            else:
                self.has_request_set[key] = url
                req = Request(url=url,method='GET',callback=self.parse)
                yield req

    @staticmethod
    def md5(val):
        import hashlib
        ha = hashlib.md5()
        ha.update(bytes(val, encoding='utf-8'))
        key = ha.hexdigest()
        return key

spiders/xiahuar.py

云顶娱乐平台 69云顶娱乐平台 70

import scrapy


class XiaoHuarItem(scrapy.Item):
    name = scrapy.Field()
    school = scrapy.Field()
    url = scrapy.Field()

items

云顶娱乐平台 71云顶娱乐平台 72

import json
import os
import requests


class JsonPipeline(object):
    def __init__(self):
        self.file = open('xiaohua.txt', 'w')

    def process_item(self, item, spider):
        v = json.dumps(dict(item), ensure_ascii=False)
        self.file.write(v)
        self.file.write('n')
        self.file.flush()
        return item


class FilePipeline(object):
    def __init__(self):
        if not os.path.exists('imgs'):
            os.makedirs('imgs')

    def process_item(self, item, spider):
        response = requests.get(item['url'], stream=True)
        file_name = '%s_%s.jpg' % (item['name'], item['school'])
        with open(os.path.join('imgs', file_name), mode='wb') as f:
            f.write(response.content)
        return item

pipelines

云顶娱乐平台 73云顶娱乐平台 74

ITEM_PIPELINES = {
   'spider1.pipelines.JsonPipeline': 100,
   'spider1.pipelines.FilePipeline': 300,
}
# 每行后面的整型值,确定了他们运行的顺序,item按数字从低到高的顺序,通过pipeline,通常将这些数字定义在0-1000范围内。

settings

对于pipeline可以做更多,如下:

云顶娱乐平台 75云顶娱乐平台 76

from scrapy.exceptions import DropItem

class CustomPipeline(object):
    def __init__(self,v):
        self.value = v

    def process_item(self, item, spider):
        # 操作并进行持久化

        # return表示会被后续的pipeline继续处理
        return item

        # 表示将item丢弃,不会被后续pipeline处理
        # raise DropItem()


    @classmethod
    def from_crawler(cls, crawler):
        """
        初始化时候,用于创建pipeline对象
        :param crawler: 
        :return: 
        """
        val = crawler.settings.getint('MMMM')
        return cls(val)

    def open_spider(self,spider):
        """
        爬虫开始执行时,调用
        :param spider: 
        :return: 
        """
        print('000000')

    def close_spider(self,spider):
        """
        爬虫关闭时,被调用
        :param spider: 
        :return: 
        """
        print('111111')

自定义pipeline

四.中间件

云顶娱乐平台 77云顶娱乐平台 78

class SpiderMiddleware(object):

    def process_spider_input(self,response, spider):
        """
        下载完成,执行,然后交给parse处理
        :param response: 
        :param spider: 
        :return: 
        """
        pass

    def process_spider_output(self,response, result, spider):
        """
        spider处理完成,返回时调用
        :param response:
        :param result:
        :param spider:
        :return: 必须返回包含 Request 或 Item 对象的可迭代对象(iterable)
        """
        return result

    def process_spider_exception(self,response, exception, spider):
        """
        异常调用
        :param response:
        :param exception:
        :param spider:
        :return: None,继续交给后续中间件处理异常;含 Response 或 Item 的可迭代对象(iterable),交给调度器或pipeline
        """
        return None


    def process_start_requests(self,start_requests, spider):
        """
        爬虫启动时调用
        :param start_requests:
        :param spider:
        :return: 包含 Request 对象的可迭代对象
        """
        return start_requests

爬虫中间件

云顶娱乐平台 79云顶娱乐平台 80

class DownMiddleware1(object):
    def process_request(self, request, spider):
        """
        请求需要被下载时,经过所有下载器中间件的process_request调用
        :param request: 
        :param spider: 
        :return:  
            None,继续后续中间件去下载;
            Response对象,停止process_request的执行,开始执行process_response
            Request对象,停止中间件的执行,将Request重新调度器
            raise IgnoreRequest异常,停止process_request的执行,开始执行process_exception
        """
        pass



    def process_response(self, request, response, spider):
        """
        spider处理完成,返回时调用
        :param response:
        :param result:
        :param spider:
        :return: 
            Response 对象:转交给其他中间件process_response
            Request 对象:停止中间件,request会被重新调度下载
            raise IgnoreRequest 异常:调用Request.errback
        """
        print('response1')
        return response

    def process_exception(self, request, exception, spider):
        """
        当下载处理器(download handler)或 process_request() (下载中间件)抛出异常
        :param response:
        :param exception:
        :param spider:
        :return: 
            None:继续交给后续中间件处理异常;
            Response对象:停止后续process_exception方法
            Request对象:停止中间件,request将会被重新调用下载
        """
        return None

下载器中间件

五. 自定制命令

  • 在spiders同级创建任意目录,如:commands
  • 在其中创建 crawlall.py 文件 (此处文件名就是自定义的命令)
    云顶娱乐平台 81云顶娱乐平台 82

        from scrapy.commands import ScrapyCommand
        from scrapy.utils.project import get_project_settings
    
        class Command(ScrapyCommand):

            requires_project = True

            def syntax(self):
                return '[options]'

            def short_desc(self):
                return 'Runs all of the spiders'

            def run(self, args, opts):
                spider_list = self.crawler_process.spiders.list()
                for name in spider_list:
                    self.crawler_process.crawl(name, **opts.__dict__)
                self.crawler_process.start()

crawlall.py
  • 在settings.py 中添加配置 COMMANDS_MODULE = ‘项目名称.目录名称’
  • 在项目目录执行命令:scrapy crawlall 

六. 自定义扩展

自定义扩展时,利用信号在指定位置注册制定操作

云顶娱乐平台 83云顶娱乐平台 84

from scrapy import signals


class MyExtension(object):
    def __init__(self, value):
        self.value = value

    @classmethod
    def from_crawler(cls, crawler):
        val = crawler.settings.getint('MMMM')
        ext = cls(val)

        crawler.signals.connect(ext.spider_opened, signal=signals.spider_opened)
        crawler.signals.connect(ext.spider_closed, signal=signals.spider_closed)

        return ext

    def spider_opened(self, spider):
        print('open')

    def spider_closed(self, spider):
        print('close')

View Code

七. 避免重复访问

scrapy默认使用 scrapy.dupefilter.RFPDupeFilter 进行去重,相关配置有:

DUPEFILTER_CLASS = 'scrapy.dupefilter.RFPDupeFilter'
DUPEFILTER_DEBUG = False
JOBDIR = "保存范文记录的日志路径,如:/root/"  # 最终路径为 /root/requests.seen

云顶娱乐平台 85云顶娱乐平台 86

class RepeatUrl:
    def __init__(self):
        self.visited_url = set()

    @classmethod
    def from_settings(cls, settings):
        """
        初始化时,调用
        :param settings: 
        :return: 
        """
        return cls()

    def request_seen(self, request):
        """
        检测当前请求是否已经被访问过
        :param request: 
        :return: True表示已经访问过;False表示未访问过
        """
        if request.url in self.visited_url:
            return True
        self.visited_url.add(request.url)
        return False

    def open(self):
        """
        开始爬去请求时,调用
        :return: 
        """
        print('open replication')

    def close(self, reason):
        """
        结束爬虫爬取时,调用
        :param reason: 
        :return: 
        """
        print('close replication')

    def log(self, request, spider):
        """
        记录日志
        :param request: 
        :param spider: 
        :return: 
        """
        print('repeat', request.url)

自定义URL去重操作

八.其他

云顶娱乐平台 87云顶娱乐平台 88

# -*- coding: utf-8 -*-

# Scrapy settings for step8_king project
#
# For simplicity, this file contains only settings considered important or
# commonly used. You can find more settings consulting the documentation:
#
#     http://doc.scrapy.org/en/latest/topics/settings.html
#     http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html
#     http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html

# 1. 爬虫名称
BOT_NAME = 'step8_king'

# 2. 爬虫应用路径
SPIDER_MODULES = ['step8_king.spiders']
NEWSPIDER_MODULE = 'step8_king.spiders'

# Crawl responsibly by identifying yourself (and your website) on the user-agent
# 3. 客户端 user-agent请求头
# USER_AGENT = 'step8_king (+http://www.yourdomain.com)'

# Obey robots.txt rules
# 4. 禁止爬虫配置
# ROBOTSTXT_OBEY = False

# Configure maximum concurrent requests performed by Scrapy (default: 16)
# 5. 并发请求数
# CONCURRENT_REQUESTS = 4

# Configure a delay for requests for the same website (default: 0)
# See http://scrapy.readthedocs.org/en/latest/topics/settings.html#download-delay
# See also autothrottle settings and docs
# 6. 延迟下载秒数
# DOWNLOAD_DELAY = 2


# The download delay setting will honor only one of:
# 7. 单域名访问并发数,并且延迟下次秒数也应用在每个域名
# CONCURRENT_REQUESTS_PER_DOMAIN = 2
# 单IP访问并发数,如果有值则忽略:CONCURRENT_REQUESTS_PER_DOMAIN,并且延迟下次秒数也应用在每个IP
# CONCURRENT_REQUESTS_PER_IP = 3

# Disable cookies (enabled by default)
# 8. 是否支持cookie,cookiejar进行操作cookie
# COOKIES_ENABLED = True
# COOKIES_DEBUG = True

# Disable Telnet Console (enabled by default)
# 9. Telnet用于查看当前爬虫的信息,操作爬虫等...
#    使用telnet ip port ,然后通过命令操作
# TELNETCONSOLE_ENABLED = True
# TELNETCONSOLE_HOST = '127.0.0.1'
# TELNETCONSOLE_PORT = [6023,]


# 10. 默认请求头
# Override the default request headers:
# DEFAULT_REQUEST_HEADERS = {
#     'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
#     'Accept-Language': 'en',
# }


# Configure item pipelines
# See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html
# 11. 定义pipeline处理请求
# ITEM_PIPELINES = {
#    'step8_king.pipelines.JsonPipeline': 700,
#    'step8_king.pipelines.FilePipeline': 500,
# }



# 12. 自定义扩展,基于信号进行调用
# Enable or disable extensions
# See http://scrapy.readthedocs.org/en/latest/topics/extensions.html
# EXTENSIONS = {
#     # 'step8_king.extensions.MyExtension': 500,
# }


# 13. 爬虫允许的最大深度,可以通过meta查看当前深度;0表示无深度
# DEPTH_LIMIT = 3

# 14. 爬取时,0表示深度优先Lifo(默认);1表示广度优先FiFo

# 后进先出,深度优先
# DEPTH_PRIORITY = 0
# SCHEDULER_DISK_QUEUE = 'scrapy.squeue.PickleLifoDiskQueue'
# SCHEDULER_MEMORY_QUEUE = 'scrapy.squeue.LifoMemoryQueue'
# 先进先出,广度优先

# DEPTH_PRIORITY = 1
# SCHEDULER_DISK_QUEUE = 'scrapy.squeue.PickleFifoDiskQueue'
# SCHEDULER_MEMORY_QUEUE = 'scrapy.squeue.FifoMemoryQueue'

# 15. 调度器队列
# SCHEDULER = 'scrapy.core.scheduler.Scheduler'
# from scrapy.core.scheduler import Scheduler


# 16. 访问URL去重
# DUPEFILTER_CLASS = 'step8_king.duplication.RepeatUrl'


# Enable and configure the AutoThrottle extension (disabled by default)
# See http://doc.scrapy.org/en/latest/topics/autothrottle.html

"""
17. 自动限速算法
    from scrapy.contrib.throttle import AutoThrottle
    自动限速设置
    1. 获取最小延迟 DOWNLOAD_DELAY
    2. 获取最大延迟 AUTOTHROTTLE_MAX_DELAY
    3. 设置初始下载延迟 AUTOTHROTTLE_START_DELAY
    4. 当请求下载完成后,获取其"连接"时间 latency,即:请求连接到接受到响应头之间的时间
    5. 用于计算的... AUTOTHROTTLE_TARGET_CONCURRENCY
    target_delay = latency / self.target_concurrency
    new_delay = (slot.delay + target_delay) / 2.0 # 表示上一次的延迟时间
    new_delay = max(target_delay, new_delay)
    new_delay = min(max(self.mindelay, new_delay), self.maxdelay)
    slot.delay = new_delay
"""

# 开始自动限速
# AUTOTHROTTLE_ENABLED = True
# The initial download delay
# 初始下载延迟
# AUTOTHROTTLE_START_DELAY = 5
# The maximum download delay to be set in case of high latencies
# 最大下载延迟
# AUTOTHROTTLE_MAX_DELAY = 10
# The average number of requests Scrapy should be sending in parallel to each remote server
# 平均每秒并发数
# AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0

# Enable showing throttling stats for every response received:
# 是否显示
# AUTOTHROTTLE_DEBUG = True

# Enable and configure HTTP caching (disabled by default)
# See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings


"""
18. 启用缓存
    目的用于将已经发送的请求或相应缓存下来,以便以后使用

    from scrapy.downloadermiddlewares.httpcache import HttpCacheMiddleware
    from scrapy.extensions.httpcache import DummyPolicy
    from scrapy.extensions.httpcache import FilesystemCacheStorage
"""
# 是否启用缓存策略
# HTTPCACHE_ENABLED = True

# 缓存策略:所有请求均缓存,下次在请求直接访问原来的缓存即可
# HTTPCACHE_POLICY = "scrapy.extensions.httpcache.DummyPolicy"
# 缓存策略:根据Http响应头:Cache-Control、Last-Modified 等进行缓存的策略
# HTTPCACHE_POLICY = "scrapy.extensions.httpcache.RFC2616Policy"

# 缓存超时时间
# HTTPCACHE_EXPIRATION_SECS = 0

# 缓存保存路径
# HTTPCACHE_DIR = 'httpcache'

# 缓存忽略的Http状态码
# HTTPCACHE_IGNORE_HTTP_CODES = []

# 缓存存储的插件
# HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'


"""
19. 代理,需要在环境变量中设置
    from scrapy.contrib.downloadermiddleware.httpproxy import HttpProxyMiddleware

    方式一:使用默认
        os.environ
        {
            http_proxy:http://root:woshiniba@192.168.11.11:9999/
            https_proxy:http://192.168.11.11:9999/
        }
    方式二:使用自定义下载中间件

    def to_bytes(text, encoding=None, errors='strict'):
        if isinstance(text, bytes):
            return text
        if not isinstance(text, six.string_types):
            raise TypeError('to_bytes must receive a unicode, str or bytes '
                            'object, got %s' % type(text).__name__)
        if encoding is None:
            encoding = 'utf-8'
        return text.encode(encoding, errors)

    class ProxyMiddleware(object):
        def process_request(self, request, spider):
            PROXIES = [
                {'ip_port': '111.11.228.75:80', 'user_pass': ''},
                {'ip_port': '120.198.243.22:80', 'user_pass': ''},
                {'ip_port': '111.8.60.9:8123', 'user_pass': ''},
                {'ip_port': '101.71.27.120:80', 'user_pass': ''},
                {'ip_port': '122.96.59.104:80', 'user_pass': ''},
                {'ip_port': '122.224.249.122:8088', 'user_pass': ''},
            ]
            proxy = random.choice(PROXIES)
            if proxy['user_pass'] is not None:
                request.meta['proxy'] = to_bytes("http://%s" % proxy['ip_port'])
                encoded_user_pass = base64.encodestring(to_bytes(proxy['user_pass']))
                request.headers['Proxy-Authorization'] = to_bytes('Basic ' + encoded_user_pass)
                print "**************ProxyMiddleware have pass************" + proxy['ip_port']
            else:
                print "**************ProxyMiddleware no pass************" + proxy['ip_port']
                request.meta['proxy'] = to_bytes("http://%s" % proxy['ip_port'])

    DOWNLOADER_MIDDLEWARES = {
       'step8_king.middlewares.ProxyMiddleware': 500,
    }

"""

"""
20. Https访问
    Https访问时有两种情况:
    1. 要爬取网站使用的可信任证书(默认支持)
        DOWNLOADER_HTTPCLIENTFACTORY = "scrapy.core.downloader.webclient.ScrapyHTTPClientFactory"
        DOWNLOADER_CLIENTCONTEXTFACTORY = "scrapy.core.downloader.contextfactory.ScrapyClientContextFactory"

    2. 要爬取网站使用的自定义证书
        DOWNLOADER_HTTPCLIENTFACTORY = "scrapy.core.downloader.webclient.ScrapyHTTPClientFactory"
        DOWNLOADER_CLIENTCONTEXTFACTORY = "step8_king.https.MySSLFactory"

        # https.py
        from scrapy.core.downloader.contextfactory import ScrapyClientContextFactory
        from twisted.internet.ssl import (optionsForClientTLS, CertificateOptions, PrivateCertificate)

        class MySSLFactory(ScrapyClientContextFactory):
            def getCertificateOptions(self):
                from OpenSSL import crypto
                v1 = crypto.load_privatekey(crypto.FILETYPE_PEM, open('/Users/wupeiqi/client.key.unsecure', mode='r').read())
                v2 = crypto.load_certificate(crypto.FILETYPE_PEM, open('/Users/wupeiqi/client.pem', mode='r').read())
                return CertificateOptions(
                    privateKey=v1,  # pKey对象
                    certificate=v2,  # X509对象
                    verify=False,
                    method=getattr(self, 'method', getattr(self, '_ssl_method', None))
                )
    其他:
        相关类
            scrapy.core.downloader.handlers.http.HttpDownloadHandler
            scrapy.core.downloader.webclient.ScrapyHTTPClientFactory
            scrapy.core.downloader.contextfactory.ScrapyClientContextFactory
        相关配置
            DOWNLOADER_HTTPCLIENTFACTORY
            DOWNLOADER_CLIENTCONTEXTFACTORY

"""



"""
21. 爬虫中间件
    class SpiderMiddleware(object):

        def process_spider_input(self,response, spider):
            '''
            下载完成,执行,然后交给parse处理
            :param response: 
            :param spider: 
            :return: 
            '''
            pass

        def process_spider_output(self,response, result, spider):
            '''
            spider处理完成,返回时调用
            :param response:
            :param result:
            :param spider:
            :return: 必须返回包含 Request 或 Item 对象的可迭代对象(iterable)
            '''
            return result

        def process_spider_exception(self,response, exception, spider):
            '''
            异常调用
            :param response:
            :param exception:
            :param spider:
            :return: None,继续交给后续中间件处理异常;含 Response 或 Item 的可迭代对象(iterable),交给调度器或pipeline
            '''
            return None


        def process_start_requests(self,start_requests, spider):
            '''
            爬虫启动时调用
            :param start_requests:
            :param spider:
            :return: 包含 Request 对象的可迭代对象
            '''
            return start_requests

    内置爬虫中间件:
        'scrapy.contrib.spidermiddleware.httperror.HttpErrorMiddleware': 50,
        'scrapy.contrib.spidermiddleware.offsite.OffsiteMiddleware': 500,
        'scrapy.contrib.spidermiddleware.referer.RefererMiddleware': 700,
        'scrapy.contrib.spidermiddleware.urllength.UrlLengthMiddleware': 800,
        'scrapy.contrib.spidermiddleware.depth.DepthMiddleware': 900,

"""
# from scrapy.contrib.spidermiddleware.referer import RefererMiddleware
# Enable or disable spider middlewares
# See http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html
SPIDER_MIDDLEWARES = {
   # 'step8_king.middlewares.SpiderMiddleware': 543,
}


"""
22. 下载中间件
    class DownMiddleware1(object):
        def process_request(self, request, spider):
            '''
            请求需要被下载时,经过所有下载器中间件的process_request调用
            :param request:
            :param spider:
            :return:
                None,继续后续中间件去下载;
                Response对象,停止process_request的执行,开始执行process_response
                Request对象,停止中间件的执行,将Request重新调度器
                raise IgnoreRequest异常,停止process_request的执行,开始执行process_exception
            '''
            pass



        def process_response(self, request, response, spider):
            '''
            spider处理完成,返回时调用
            :param response:
            :param result:
            :param spider:
            :return:
                Response 对象:转交给其他中间件process_response
                Request 对象:停止中间件,request会被重新调度下载
                raise IgnoreRequest 异常:调用Request.errback
            '''
            print('response1')
            return response

        def process_exception(self, request, exception, spider):
            '''
            当下载处理器(download handler)或 process_request() (下载中间件)抛出异常
            :param response:
            :param exception:
            :param spider:
            :return:
                None:继续交给后续中间件处理异常;
                Response对象:停止后续process_exception方法
                Request对象:停止中间件,request将会被重新调用下载
            '''
            return None


    默认下载中间件
    {
        'scrapy.contrib.downloadermiddleware.robotstxt.RobotsTxtMiddleware': 100,
        'scrapy.contrib.downloadermiddleware.httpauth.HttpAuthMiddleware': 300,
        'scrapy.contrib.downloadermiddleware.downloadtimeout.DownloadTimeoutMiddleware': 350,
        'scrapy.contrib.downloadermiddleware.useragent.UserAgentMiddleware': 400,
        'scrapy.contrib.downloadermiddleware.retry.RetryMiddleware': 500,
        'scrapy.contrib.downloadermiddleware.defaultheaders.DefaultHeadersMiddleware': 550,
        'scrapy.contrib.downloadermiddleware.redirect.MetaRefreshMiddleware': 580,
        'scrapy.contrib.downloadermiddleware.httpcompression.HttpCompressionMiddleware': 590,
        'scrapy.contrib.downloadermiddleware.redirect.RedirectMiddleware': 600,
        'scrapy.contrib.downloadermiddleware.cookies.CookiesMiddleware': 700,
        'scrapy.contrib.downloadermiddleware.httpproxy.HttpProxyMiddleware': 750,
        'scrapy.contrib.downloadermiddleware.chunked.ChunkedTransferMiddleware': 830,
        'scrapy.contrib.downloadermiddleware.stats.DownloaderStats': 850,
        'scrapy.contrib.downloadermiddleware.httpcache.HttpCacheMiddleware': 900,
    }

"""
# from scrapy.contrib.downloadermiddleware.httpauth import HttpAuthMiddleware
# Enable or disable downloader middlewares
# See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html
# DOWNLOADER_MIDDLEWARES = {
#    'step8_king.middlewares.DownMiddleware1': 100,
#    'step8_king.middlewares.DownMiddleware2': 500,
# }

settings 

九.TinyScrapy

云顶娱乐平台 89云顶娱乐平台 90

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import types
from twisted.internet import defer
from twisted.web.client import getPage
from twisted.internet import reactor



class Request(object):
    def __init__(self, url, callback):
        self.url = url
        self.callback = callback
        self.priority = 0


class HttpResponse(object):
    def __init__(self, content, request):
        self.content = content
        self.request = request


class ChouTiSpider(object):

    def start_requests(self):
        url_list = ['http://www.cnblogs.com/', 'http://www.bing.com']
        for url in url_list:
            yield Request(url=url, callback=self.parse)

    def parse(self, response):
        print(response.request.url)
        # yield Request(url="http://www.baidu.com", callback=self.parse)




from queue import Queue
Q = Queue()


class CallLaterOnce(object):
    def __init__(self, func, *a, **kw):
        self._func = func
        self._a = a
        self._kw = kw
        self._call = None

    def schedule(self, delay=0):
        if self._call is None:
            self._call = reactor.callLater(delay, self)

    def cancel(self):
        if self._call:
            self._call.cancel()

    def __call__(self):
        self._call = None
        return self._func(*self._a, **self._kw)


class Engine(object):
    def __init__(self):
        self.nextcall = None
        self.crawlling = []
        self.max = 5
        self._closewait = None

    def get_response(self,content, request):
        response = HttpResponse(content, request)
        gen = request.callback(response)
        if isinstance(gen, types.GeneratorType):
            for req in gen:
                req.priority = request.priority + 1
                Q.put(req)


    def rm_crawlling(self,response,d):
        self.crawlling.remove(d)

    def _next_request(self,spider):
        if Q.qsize() == 0 and len(self.crawlling) == 0:
            self._closewait.callback(None)

        if len(self.crawlling) >= 5:
            return
        while len(self.crawlling) < 5:
            try:
                req = Q.get(block=False)
            except Exception as e:
                req = None
            if not req:
                return
            d = getPage(req.url.encode('utf-8'))
            self.crawlling.append(d)
            d.addCallback(self.get_response, req)
            d.addCallback(self.rm_crawlling,d)
            d.addCallback(lambda _: self.nextcall.schedule())


    @defer.inlineCallbacks
    def crawl(self):
        spider = ChouTiSpider()
        start_requests = iter(spider.start_requests())
        flag = True
        while flag:
            try:
                req = next(start_requests)
                Q.put(req)
            except StopIteration as e:
                flag = False

        self.nextcall = CallLaterOnce(self._next_request,spider)
        self.nextcall.schedule()

        self._closewait = defer.Deferred()
        yield self._closewait

    @defer.inlineCallbacks
    def pp(self):
        yield self.crawl()

_active = set()
obj = Engine()
d = obj.crawl()
_active.add(d)

li = defer.DeferredList(_active)
li.addBoth(lambda _,*a,**kw: reactor.stop())

reactor.run()

参考版

点击下载

 更多文档参见:

 

十 Spider Middleware

1、爬虫中间件方法介绍

云顶娱乐平台 91云顶娱乐平台 92

from scrapy import signals

class SpiderMiddleware(object):
    # Not all methods need to be defined. If a method is not defined,
    # scrapy acts as if the spider middleware does not modify the
    # passed objects.

    @classmethod
    def from_crawler(cls, crawler):
        # This method is used by Scrapy to create your spiders.
        s = cls()
        crawler.signals.connect(s.spider_opened, signal=signals.spider_opened) #当前爬虫执行时触发spider_opened
        return s

    def spider_opened(self, spider):
        # spider.logger.info('我是egon派来的爬虫1: %s' % spider.name)
        print('我是egon派来的爬虫1: %s' % spider.name)

    def process_start_requests(self, start_requests, spider):
        # Called with the start requests of the spider, and works
        # similarly to the process_spider_output() method, except
        # that it doesn’t have a response associated.

        # Must return only requests (not items).
        print('start_requests1')
        for r in start_requests:
            yield r

    def process_spider_input(self, response, spider):
        # Called for each response that goes through the spider
        # middleware and into the spider.
        # 每个response经过爬虫中间件进入spider时调用

        # 返回值:Should return None or raise an exception.
        #1、None: 继续执行其他中间件的process_spider_input
        #2、抛出异常:
        # 一旦抛出异常则不再执行其他中间件的process_spider_input
        # 并且触发request绑定的errback
        # errback的返回值倒着传给中间件的process_spider_output
        # 如果未找到errback,则倒着执行中间件的process_spider_exception

        print("input1")
        return None

    def process_spider_output(self, response, result, spider):
        # Called with the results returned from the Spider, after
        # it has processed the response.

        # Must return an iterable of Request, dict or Item objects.
        print('output1')

        # 用yield返回多次,与return返回一次是一个道理
        # 如果生成器掌握不好(函数内有yield执行函数得到的是生成器而并不会立刻执行),生成器的形式会容易误导你对中间件执行顺序的理解
        # for i in result:
        #     yield i
        return result

    def process_spider_exception(self, response, exception, spider):
        # Called when a spider or process_spider_input() method
        # (from other spider middleware) raises an exception.

        # Should return either None or an iterable of Response, dict
        # or Item objects.
        print('exception1')

爬虫中间件

View Code

 2、当前爬虫启动时以及初始请求产生时

云顶娱乐平台 93云顶娱乐平台 94

#步骤一:
'''
打开注释:
SPIDER_MIDDLEWARES = {
   'Baidu.middlewares.SpiderMiddleware1': 200,
   'Baidu.middlewares.SpiderMiddleware2': 300,
   'Baidu.middlewares.SpiderMiddleware3': 400,
}

'''


#步骤二:middlewares.py
from scrapy import signals

class SpiderMiddleware1(object):
    @classmethod
    def from_crawler(cls, crawler):
        s = cls()
        crawler.signals.connect(s.spider_opened, signal=signals.spider_opened) #当前爬虫执行时触发spider_opened
        return s

    def spider_opened(self, spider):
        print('我是egon派来的爬虫1: %s' % spider.name)

    def process_start_requests(self, start_requests, spider):
        # Must return only requests (not items).
        print('start_requests1')
        for r in start_requests:
            yield r




class SpiderMiddleware2(object):
    @classmethod
    def from_crawler(cls, crawler):
        s = cls()
        crawler.signals.connect(s.spider_opened, signal=signals.spider_opened)  # 当前爬虫执行时触发spider_opened
        return s

    def spider_opened(self, spider):
        print('我是egon派来的爬虫2: %s' % spider.name)

    def process_start_requests(self, start_requests, spider):
        print('start_requests2')
        for r in start_requests:
            yield r


class SpiderMiddleware3(object):
    @classmethod
    def from_crawler(cls, crawler):
        s = cls()
        crawler.signals.connect(s.spider_opened, signal=signals.spider_opened)  # 当前爬虫执行时触发spider_opened
        return s

    def spider_opened(self, spider):
        print('我是egon派来的爬虫3: %s' % spider.name)

    def process_start_requests(self, start_requests, spider):
        print('start_requests3')
        for r in start_requests:
            yield r


#步骤三:分析运行结果
#1、启动爬虫时则立刻执行:

我是egon派来的爬虫1: baidu
我是egon派来的爬虫2: baidu
我是egon派来的爬虫3: baidu


#2、然后产生一个初始的request请求,依次经过爬虫中间件1,2,3:
start_requests1
start_requests2
start_requests3

View Code

3、process_spider_input返回None时

云顶娱乐平台 95云顶娱乐平台 96

#步骤一:打开注释:
SPIDER_MIDDLEWARES = {
   'Baidu.middlewares.SpiderMiddleware1': 200,
   'Baidu.middlewares.SpiderMiddleware2': 300,
   'Baidu.middlewares.SpiderMiddleware3': 400,
}

'''

#步骤二:middlewares.py
from scrapy import signals

class SpiderMiddleware1(object):

    def process_spider_input(self, response, spider):
        print("input1")

    def process_spider_output(self, response, result, spider):
        print('output1')
        return result

    def process_spider_exception(self, response, exception, spider):
        print('exception1')


class SpiderMiddleware2(object):

    def process_spider_input(self, response, spider):
        print("input2")
        return None

    def process_spider_output(self, response, result, spider):
        print('output2')
        return result

    def process_spider_exception(self, response, exception, spider):
        print('exception2')


class SpiderMiddleware3(object):

    def process_spider_input(self, response, spider):
        print("input3")
        return None

    def process_spider_output(self, response, result, spider):
        print('output3')
        return result

    def process_spider_exception(self, response, exception, spider):
        print('exception3')


#步骤三:运行结果分析

#1、返回response时,依次经过爬虫中间件1,2,3
input1
input2
input3

#2、spider处理完毕后,依次经过爬虫中间件3,2,1
output3
output2
output1

View Code

4、process_spider_input抛出异常时

云顶娱乐平台 97云顶娱乐平台 98

#步骤一:
'''
打开注释:
SPIDER_MIDDLEWARES = {
   'Baidu.middlewares.SpiderMiddleware1': 200,
   'Baidu.middlewares.SpiderMiddleware2': 300,
   'Baidu.middlewares.SpiderMiddleware3': 400,
}

'''

#步骤二:middlewares.py

from scrapy import signals

class SpiderMiddleware1(object):

    def process_spider_input(self, response, spider):
        print("input1")

    def process_spider_output(self, response, result, spider):
        print('output1')
        return result

    def process_spider_exception(self, response, exception, spider):
        print('exception1')


class SpiderMiddleware2(object):

    def process_spider_input(self, response, spider):
        print("input2")
        raise Type

    def process_spider_output(self, response, result, spider):
        print('output2')
        return result

    def process_spider_exception(self, response, exception, spider):
        print('exception2')


class SpiderMiddleware3(object):

    def process_spider_input(self, response, spider):
        print("input3")
        return None

    def process_spider_output(self, response, result, spider):
        print('output3')
        return result

    def process_spider_exception(self, response, exception, spider):
        print('exception3')



#运行结果        
input1
input2
exception3
exception2
exception1

#分析:
#1、当response经过中间件1的 process_spider_input返回None,继续交给中间件2的process_spider_input
#2、中间件2的process_spider_input抛出异常,则直接跳过后续的process_spider_input,将异常信息传递给Spiders里该请求的errback
#3、没有找到errback,则该response既没有被Spiders正常的callback执行,也没有被errback执行,即Spiders啥事也没有干,那么开始倒着执行process_spider_exception
#4、如果process_spider_exception返回None,代表该方法推卸掉责任,并没处理异常,而是直接交给下一个process_spider_exception,全都返回None,则异常最终交给Engine抛出

View Code

5、指定errback

云顶娱乐平台 99云顶娱乐平台 100

#步骤一:spider.py
import scrapy


class BaiduSpider(scrapy.Spider):
    name = 'baidu'
    allowed_domains = ['www.baidu.com']
    start_urls = ['http://www.baidu.com/']


    def start_requests(self):
        yield scrapy.Request(url='http://www.baidu.com/',
                             callback=self.parse,
                             errback=self.parse_err,
                             )

    def parse(self, response):
        pass

    def parse_err(self,res):
        #res 为异常信息,异常已经被该函数处理了,因此不会再抛给因此,于是开始走process_spider_output
        return [1,2,3,4,5] #提取异常信息中有用的数据以可迭代对象的形式存放于管道中,等待被process_spider_output取走



#步骤二:
'''
打开注释:
SPIDER_MIDDLEWARES = {
   'Baidu.middlewares.SpiderMiddleware1': 200,
   'Baidu.middlewares.SpiderMiddleware2': 300,
   'Baidu.middlewares.SpiderMiddleware3': 400,
}

'''

#步骤三:middlewares.py

from scrapy import signals

class SpiderMiddleware1(object):

    def process_spider_input(self, response, spider):
        print("input1")

    def process_spider_output(self, response, result, spider):
        print('output1',list(result))
        return result

    def process_spider_exception(self, response, exception, spider):
        print('exception1')


class SpiderMiddleware2(object):

    def process_spider_input(self, response, spider):
        print("input2")
        raise TypeError('input2 抛出异常')

    def process_spider_output(self, response, result, spider):
        print('output2',list(result))
        return result

    def process_spider_exception(self, response, exception, spider):
        print('exception2')


class SpiderMiddleware3(object):

    def process_spider_input(self, response, spider):
        print("input3")
        return None

    def process_spider_output(self, response, result, spider):
        print('output3',list(result))
        return result

    def process_spider_exception(self, response, exception, spider):
        print('exception3')



#步骤四:运行结果分析
input1
input2
output3 [1, 2, 3, 4, 5] #parse_err的返回值放入管道中,只能被取走一次,在output3的方法内可以根据异常信息封装一个新的request请求
output2 []
output1 []

View Code

    a、基本请求

官网链接:https://docs.scrapy.org/en/latest/topics/architecture.html

十三 爬取亚马逊商品信息

 

    b、带参数get请求—–》》params

八 Item Pipeline

云顶娱乐平台 101云顶娱乐平台 102

#一:可以写多个Pipeline类
#1、如果优先级高的Pipeline的process_item返回一个值或者None,会自动传给下一个pipline的process_item,
#2、如果只想让第一个Pipeline执行,那得让第一个pipline的process_item抛出异常raise DropItem()

#3、可以用spider.name == '爬虫名' 来控制哪些爬虫用哪些pipeline

二:示范
from scrapy.exceptions import DropItem

class CustomPipeline(object):
    def __init__(self,v):
        self.value = v

    @classmethod
    def from_crawler(cls, crawler):
        """
        Scrapy会先通过getattr判断我们是否自定义了from_crawler,有则调它来完
        成实例化
        """
        val = crawler.settings.getint('MMMM')
        return cls(val)

    def open_spider(self,spider):
        """
        爬虫刚启动时执行一次
        """
        print('000000')

    def close_spider(self,spider):
        """
        爬虫关闭时执行一次
        """
        print('111111')


    def process_item(self, item, spider):
        # 操作并进行持久化

        # return表示会被后续的pipeline继续处理
        return item

        # 表示将item丢弃,不会被后续pipeline处理
        # raise DropItem()

自定义pipeline

自定义pipeline

云顶娱乐平台 103云顶娱乐平台 104

#1、settings.py
HOST="127.0.0.1"
PORT=27017
USER="root"
PWD="123"
DB="amazon"
TABLE="goods"



ITEM_PIPELINES = {
   'Amazon.pipelines.CustomPipeline': 200,
}

#2、pipelines.py
class CustomPipeline(object):
    def __init__(self,host,port,user,pwd,db,table):
        self.host=host
        self.port=port
        self.user=user
        self.pwd=pwd
        self.db=db
        self.table=table

    @classmethod
    def from_crawler(cls, crawler):
        """
        Scrapy会先通过getattr判断我们是否自定义了from_crawler,有则调它来完
        成实例化
        """
        HOST = crawler.settings.get('HOST')
        PORT = crawler.settings.get('PORT')
        USER = crawler.settings.get('USER')
        PWD = crawler.settings.get('PWD')
        DB = crawler.settings.get('DB')
        TABLE = crawler.settings.get('TABLE')
        return cls(HOST,PORT,USER,PWD,DB,TABLE)

    def open_spider(self,spider):
        """
        爬虫刚启动时执行一次
        """
        self.client = MongoClient('mongodb://%s:%s@%s:%s' %(self.user,self.pwd,self.host,self.port))

    def close_spider(self,spider):
        """
        爬虫关闭时执行一次
        """
        self.client.close()


    def process_item(self, item, spider):
        # 操作并进行持久化

        self.client[self.db][self.table].save(dict(item))

示范

实例

杂项

#Windows平台
    1、pip3 install wheel #安装后,便支持通过wheel文件安装软件,wheel文件官网:https://www.lfd.uci.edu/~gohlke/pythonlibs
    3、pip3 install lxml
    4、pip3 install pyopenssl
    5、下载并安装pywin32:https://sourceforge.net/projects/pywin32/files/pywin32/
    6、下载twisted的wheel文件:http://www.lfd.uci.edu/~gohlke/pythonlibs/#twisted
    7、执行pip3 install 下载目录Twisted-17.9.0-cp36-cp36m-win_amd64.whl
    8、pip3 install scrapy

#Linux平台
    1、pip3 install scrapy

四、响应Response

View Code

update语法介绍

十四、爬虫性能

   b、安装

五、selenium模块

往数组内添加元素:$push
#1、为名字为yuanhao的人添加一个爱好read
db.user.update({"name":"yuanhao"},{"$push":{"hobbies":"read"}})

#2、为名字为yuanhao的人一次添加多个爱好tea,dancing
db.user.update({"name":"yuanhao"},{"$push":{
    "hobbies":{"$each":["tea","dancing"]}
}})

按照位置且只能从开头或结尾删除元素:$pop
#3、{"$pop":{"key":1}} 从数组末尾删除一个元素

db.user.update({"name":"yuanhao"},{"$pop":{
    "hobbies":1}
})

#4、{"$pop":{"key":-1}} 从头部删除
db.user.update({"name":"yuanhao"},{"$pop":{
    "hobbies":-1}
})

#5、按照条件删除元素,:"$pull" 把符合条件的统统删掉,而$pop只能从两端删
db.user.update({'addr.country':"China"},{"$pull":{
    "hobbies":"read"}
},
{
    "multi":true
}
)

 

View Code

import requests
response=requests.get('http://dig.chouti.com/')
print(response.text)
#安装:selenium+chromedriver
pip3 install selenium
下载chromdriver.exe放到python安装路径的scripts目录中即可,注意最新版本是2.29,并非2.9
国内镜像网站地址:http://npm.taobao.org/mirrors/chromedriver/2.29/
最新的版本去官网找:https://sites.google.com/a/chromium.org/chromedriver/downloads

#注意:
selenium3默认支持的webdriver是Firfox,而Firefox需要安装geckodriver
下载链接:https://github.com/mozilla/geckodriver/releases

十八、Selectors

应用程序数据集的大小正在以不可思议的速度增长。随着可用带宽的增长和存储器价格的下降,即使是一个小规模的应用程序,需要存储的数据量也可能大的惊人,甚至超出
了很多数据库的处理能力。过去非常罕见的T级数据,现在已经是司空见惯了。
由于需要存储的数据量不断增长,开发者面临一个问题:应该如何扩展数据库,分为纵向扩展和横向扩展,纵向扩展是最省力的做法,但缺点是大型机一般都非常贵,而且
当数据量达到机器的物理极限时,花再多的钱也买不到更强的机器了,此时选择横向扩展更为合适,但横向扩展带来的另外一个问题就是需要管理的机器太多。
MongoDB的设计采用横向扩展。面向文档的数据模型使它能很容易地在多台服务器之间进行数据分割。MongoDB能够自动处理跨集群的数据和负载,自动重新分配文档,以及将
用户的请求路由到正确的机器上。这样,开发者能够集中精力编写应用程序,而不需要考虑如何扩展的问题。如果一个集群需要更大的容量,只需要向集群添加新服务器,
MongoDB就会自动将现有的数据向新服务器传送

** 
 c、
自定义http报头多少有点麻烦,于是有了aiohttp模块,专门帮我们封装http报头,然后我们还需要用asyncio检测IO实现切换**

   b、集合操作

云顶娱乐平台 105云顶娱乐平台 106

云顶娱乐平台 107云顶娱乐平台 108

成员运算

    c、命令行工具

#1、CSS选择器
print(soup.p.select('.sister'))
print(soup.select('.sister span'))

print(soup.select('#link1'))
print(soup.select('#link1 span'))

print(soup.select('#list-2 .element.xxx'))

print(soup.select('#list-2')[0].select('.element')) #可以一直select,但其实没必要,一条select就可以了

# 2、获取属性
print(soup.select('#list-2 h1')[0].attrs)

# 3、获取内容
print(soup.select('#list-2 h1')[0].get_text())

**   f、封装了gevent+requests模块的grequests模块**

#1、集合存在于数据库中,通常情况下为了方便管理,不同格式和类型的数据应该插入到不同的集合,但其实集合没有固定的结构,这意味着我们完全可以把不同格式和类型的数据统统插入一个集合中。

#2、组织子集合的方式就是使用“.”,分隔不同命名空间的子集合。
比如一个具有博客功能的应用可能包含两个集合,分别是blog.posts和blog.authors,这是为了使组织结构更清晰,这里的blog集合(这个集合甚至不需要存在)跟它的两个子集合没有任何关系。
在MongoDB中,使用子集合来组织数据非常高效,值得推荐

#3、当第一个文档插入时,集合就会被创建。合法的集合名:
集合名不能是空字符串""。
集合名不能含有字符(空字符),这个字符表示集合名的结尾。
集合名不能以"system."开头,这是为系统集合保留的前缀。
用户创建的集合名字不能含有保留字符。有些驱动程序的确支持在集合名里面包含,这是因为某些系统生成的集合中包含该字符。除非你要访问这种系统创建的集合,否则千万不要在名字里出现$。
 上述无论哪种解决方案其实没有解决一个性能相关的问题:IO阻塞,无论是多进程还是多线程,在遇到IO阻塞时都会被操作系统强行剥夺走CPU的执行权限,
程序的执行效率因此就降低了下来。
    解决这一问题的关键在于,我们自己从应用程序级别检测IO阻塞然后切换到我们自己程序的其他任务执行,这样把我们程序的IO降到最低,
我们的程序处于就绪态就会增多,以此来迷惑操作系统,操作系统便以为我们的程序是IO比较少的程序,从而会尽可能多的分配CPU给我们,这样也就达到了提升程序执行效率的目的
import requests
respone=requests.get('http://www.jianshu.com')
# respone属性
print(respone.text)
print(respone.content)

print(respone.status_code)
print(respone.headers)
print(respone.cookies)
print(respone.cookies.get_dict())
print(respone.cookies.items())

print(respone.url)
print(respone.history)

print(respone.encoding)

#关闭:response.close()
from contextlib import closing
with closing(requests.get('xxx',stream=True)) as response:
    for line in response.iter_content():
    pass
#GET请求
HTTP默认的请求方法就是GET
     * 没有请求体
     * 数据必须在1K之内!
     * GET请求数据会暴露在浏览器的地址栏中

GET请求常用的操作:
       1. 在浏览器的地址栏中直接给出URL,那么就一定是GET请求
       2. 点击页面上的超链接也一定是GET请求
       3. 提交表单时,表单默认使用GET请求,但可以设置为POST


#POST请求
(1). 数据不会出现在地址栏中
(2). 数据的大小没有上限
(3). 有请求体
(4). 请求体中如果存在中文,会使用URL编码!


#!!!requests.post()用法与requests.get()完全一致,特殊的是requests.post()有一个data参数,用来存放请求体数据
复制代码
# SQL: regexp 正则
# MongoDB: /正则表达/i

#1、select * from db1.user where name regexp '^j.*?(g|n)$';
db.user.find({'name':/^j.*?(g|n)$/i})

云顶娱乐平台 109云顶娱乐平台 110

    b、发送POST的请求,模拟浏览器的登录行为

 
 a、在python3.3之后新增了asyncio模块,可以帮我们检测IO(只能是网络IO),实现应用程序级别的切换

    a、介绍

   爬虫的本质就是一个socket客户端与服务端的通信过程,如果我们有多个url待爬取,只用一个线程且采用串行的方式执行,
那只能等待爬取一个结束后才能继续下一个,效率会非常低。需要强调的是:对于单线程下串行N个任务,并不完全等同于低效,
如果这N个任务都是纯计算的任务,那么该线程对cpu的利用率仍然会很高,之所以单线程下串行多个爬虫任务低效,
是因为爬虫任务是明显的IO密集型程序。

     a、介绍

#1、五种过滤器: 字符串、正则表达式、列表、True、方法
#1.1、字符串:即标签名
print(soup.find_all('b'))

#1.2、正则表达式
import re
print(soup.find_all(re.compile('^b'))) #找出b开头的标签,结果有body和b标签

#1.3、列表:如果传入列表参数,Beautiful Soup会将与列表中任一元素匹配的内容返回.下面代码找到文档中所有<a>标签和<b>标签:
print(soup.find_all(['a','b']))

#1.4、True:可以匹配任何值,下面代码查找到所有的tag,但是不会返回字符串节点
print(soup.find_all(True))
for tag in soup.find_all(True):
    print(tag.name)

#1.5、方法:如果没有合适过滤器,那么还可以定义一个方法,方法只接受一个元素参数 ,如果这个方法返回 True 表示当前元素匹配并且被找到,如果不是则反回 False
def has_class_but_no_id(tag):
    return tag.has_attr('class') and not tag.has_attr('id')

云顶娱乐平台 111云顶娱乐平台 112

十、搜索文档数

云顶娱乐平台 113云顶娱乐平台 114

设置:$set

查询数组

十三、CRUD操作

云顶娱乐平台 115云顶娱乐平台 116

find_all

**   e、还有之前在协程时介绍的gevent模块**

#1、Spiders是由一系列类(定义了一个网址或一组网址将被爬取)组成,具体包括如何执行爬取任务并且如何从页面中提取结构化的数据。

#2、换句话说,Spiders是你为了一个特定的网址或一组网址自定义爬取和解析页面行为的地方

云顶娱乐平台 117云顶娱乐平台 118

    d、解析json

    c、数据库:在MongoDB中,多个文档组成集合,多个集合可以组成数据库

#1 //与/
#2 text
#3、extract与extract_first:从selector对象中解出内容
#4、属性:xpath的属性加前缀@
#4、嵌套查找
#5、设置默认值
#4、按照属性查找
#5、按照属性模糊查找
#6、正则表达式
#7、xpath相对路径
#8、带变量的xpath

云顶娱乐平台 119云顶娱乐平台 120

一、爬虫之requests

    a、介绍

View Code

       
 显式等待:在browser.get(’xxx’)之后设置,只针对某个元素有效

#1、生成初始的Requests来爬取第一个URLS,并且标识一个回调函数
第一个请求定义在start_requests()方法内默认从start_urls列表中获得url地址来生成Request请求,默认的回调函数是parse方法。回调函数在下载完成返回response时自动触发

#2、在回调函数中,解析response并且返回值
返回值可以4种:
        包含解析数据的字典
        Item对象
        新的Request对象(新的Requests也需要指定一个回调函数)
        或者是可迭代对象(包含Items或Request)

#3、在回调函数中解析页面内容
通常使用Scrapy自带的Selectors,但很明显你也可以使用Beutifulsoup,lxml或其他你爱用啥用啥。

#4、最后,针对返回的Items对象将会被持久化到数据库
通过Item Pipeline组件存到数据库:https://docs.scrapy.org/en/latest/topics/item-pipeline.html#topics-item-pipeline)
或者导出到不同的文件(通过Feed exports:https://docs.scrapy.org/en/latest/topics/feed-exports.html#topics-feed-exports)
复制代码

三、基于post请求

八、爬虫之解析库—-re,beautifulsoup、pyquery

六、选择器

    b、易用性

   a、背景知识

#遍历文档树:即直接通过标签名字选择,特点是选择速度快,但如果存在多个相同的标签则只返回第一个
html_doc = """
<html><head><title>The Dormouse's story</title></head>
<body>
<p id="my p" class="title"><b id="bbb" class="boldest">The Dormouse's story</b></p>

<p class="story">Once upon a time there were three little sisters; and their names were
<a href="http://example.com/elsie" class="sister" id="link1">Elsie</a>,
<a href="http://example.com/lacie" class="sister" id="link2">Lacie</a> and
<a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>;
and they lived at the bottom of a well.</p>

<p class="story">...</p>
"""

#1、用法
from bs4 import BeautifulSoup
soup=BeautifulSoup(html_doc,'lxml')
# soup=BeautifulSoup(open('a.html'),'lxml')

print(soup.p) #存在多个相同的标签则只返回第一个
print(soup.a) #存在多个相同的标签则只返回第一个

#2、获取标签的名称
print(soup.p.name)

#3、获取标签的属性
print(soup.p.attrs)

#4、获取标签的内容
print(soup.p.string) # p下的文本只有一个时,取到,否则为None
print(soup.p.strings) #拿到一个生成器对象, 取到p下所有的文本内容
print(soup.p.text) #取到p下所有的文本内容
for line in soup.stripped_strings: #去掉空白
    print(line)


'''
如果tag包含了多个子节点,tag就无法确定 .string 方法应该调用哪个子节点的内容, .string 的输出结果是 None,如果只有一个子节点那么就输出该子节点的文本,比如下面的这种结构,soup.p.string 返回为None,但soup.p.strings就可以找到所有文本
<p id='list-1'>
    哈哈哈哈
    <a class='sss'>

            <h1>aaaa</h1>

    </a>
    <b>bbbbb</b>
</p>
'''

#5、嵌套选择
print(soup.head.title.string)
print(soup.body.a.string)


#6、子节点、子孙节点
print(soup.p.contents) #p下所有子节点
print(soup.p.children) #得到一个迭代器,包含p下所有子节点

for i,child in enumerate(soup.p.children):
    print(i,child)

print(soup.p.descendants) #获取子孙节点,p下所有的标签都会选择出来
for i,child in enumerate(soup.p.descendants):
    print(i,child)

#7、父节点、祖先节点
print(soup.a.parent) #获取a标签的父节点
print(soup.a.parents) #找到a标签所有的祖先节点,父亲的父亲,父亲的父亲的父亲...


#8、兄弟节点
print('=====>')
print(soup.a.next_sibling) #下一个兄弟
print(soup.a.previous_sibling) #上一个兄弟

print(list(soup.a.next_siblings)) #下面的兄弟们=>生成器对象
print(soup.a.previous_siblings) #上面的兄弟们=>生成器对象

用法

   查:

   e、聚合

   b、安装

云顶娱乐平台 121云顶娱乐平台 122

   Scrapy一个开源和协作的框架,其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的,使用它可以以快速、简单、可扩展的方式从网站中提取所需的数据。
但目前Scrapy的用途十分广泛,可用于如数据挖掘、监测和自动化测试等领域,也可以应用在获取API所返回的数据(例如 Amazon Associates Web Services ) 或者通用的网络爬虫。
    Scrapy 是基于twisted框架开发而来,twisted是一个流行的事件驱动的python网络框架。因此Scrapy使用了一种非阻塞(又名异步)的代码来实现并发

    c、安装:pip3 install requests

#添加删除数组内元素

七、等待元素加载

** 
 d、此外,还可以将requests.get函数传给asyncio,就能够被检测了**

如果你有数据存储在MongoDB中,你想做的可能就不仅仅是将数据提取出来那么简单了;你可能希望对数据进行分析并加以利用。MongoDB提供了以下聚合工具:
#1、聚合框架
#2、MapReduce(详见MongoDB权威指南)
#3、几个简单聚合命令:count、distinct和group。(详见MongoDB权威指南)

#聚合框架:
可以使用多个构件创建一个管道,上一个构件的结果传给下一个构件。
这些构件包括(括号内为构件对应的操作符):筛选($match)、投射($project)、分组($group)、排序($sort)、限制($limit)、跳过($skip)
不同的管道操作符可以任意组合,重复使用
#1 查看帮助
    scrapy -h
    scrapy <command> -h

#2 有两种命令:其中Project-only必须切到项目文件夹下才能执行,而Global的命令则不需要
    Global commands:
        startproject #创建项目
        genspider    #创建爬虫程序
        settings     #如果是在项目目录下,则得到的是该项目的配置
        runspider    #运行一个独立的python文件,不必创建项目
        shell        #scrapy shell url地址  在交互式调试,如选择器规则正确与否
        fetch        #独立于程单纯地爬取一个页面,可以拿到请求头
        view         #下载完毕后直接弹出浏览器,以此可以分辨出哪些数据是ajax请求
        version      #scrapy version 查看scrapy的版本,scrapy version -v查看scrapy依赖库的版本
    Project-only commands:
        crawl        #运行爬虫,必须创建项目才行,确保配置文件中ROBOTSTXT_OBEY = False
        check        #检测项目中有无语法错误
        list         #列出项目中所包含的爬虫名
        edit         #编辑器,一般不用
        parse        #scrapy parse url地址 --callback 回调函数  #以此可以验证我们的回调函数是否正确
        bench        #scrapy bentch压力测试

#3 官网链接
    https://docs.scrapy.org/en/latest/topics/commands.html

分页

#遍历文档树:即直接通过标签名字选择,特点是选择速度快,但如果存在多个相同的标签则只返回第一个
#1、用法
#2、获取标签的名称
#3、获取标签的属性
#4、获取标签的内容
#5、嵌套选择
#6、子节点、子孙节点
#7、父节点、祖先节点
#8、兄弟节点
安装:Beautifulsoup4
      pip3 install beautifulsoup4
安装解释器:
      Beautiful Soup支持Python标准库中的HTML解析器,还支持一些第三方的解析器,其中一个是 lxml .根据操作系统不同,可以选择下列方法来安装lxml:

    b、编码问题

   d、文件说明:

# SQL:and,or,not
# MongoDB:字典中逗号分隔的多个条件是and关系,"$or"的条件放到[]内,"$not"

#1、select * from db1.user where id >= 2 and id < 4;
db.user.find({'_id':{"$gte":2,"$lt":4}})

#2、select * from db1.user where id >= 2 and age < 40;
db.user.find({"_id":{"$gte":2},"age":{"$lt":40}})

#3、select * from db1.user where id >= 5 or name = "alex";
db.user.find({
    "$or":[
        {'_id':{"$gte":5}},
        {"name":"alex"}
        ]
})

#4、select * from db1.user where id % 2=1;
db.user.find({'_id':{"$mod":[2,1]}})

#5、上题,取反
db.user.find({'_id':{"$not":{"$mod":[2,1]}}})
#2、find_all( name , attrs , recursive , text , **kwargs )
#2.1、name: 搜索name参数的值可以使任一类型的 过滤器 ,字符窜,正则表达式,列表,方法或是 True .
print(soup.find_all(name=re.compile('^t')))

#2.2、keyword: key=value的形式,value可以是过滤器:字符串 , 正则表达式 , 列表, True .
print(soup.find_all(id=re.compile('my')))
print(soup.find_all(href=re.compile('lacie'),id=re.compile('d'))) #注意类要用class_
print(soup.find_all(id=True)) #查找有id属性的标签

# 有些tag属性在搜索不能使用,比如HTML5中的 data-* 属性:
data_soup = BeautifulSoup('<div data-foo="value">foo!</div>','lxml')
# data_soup.find_all(data-foo="value") #报错:SyntaxError: keyword can't be an expression
# 但是可以通过 find_all() 方法的 attrs 参数定义一个字典参数来搜索包含特殊属性的tag:
print(data_soup.find_all(attrs={"data-foo": "value"}))
# [<div data-foo="value">foo!</div>]

#2.3、按照类名查找,注意关键字是class_,class_=value,value可以是五种选择器之一
print(soup.find_all('a',class_='sister')) #查找类为sister的a标签
print(soup.find_all('a',class_='sister ssss')) #查找类为sister和sss的a标签,顺序错误也匹配不成功
print(soup.find_all(class_=re.compile('^sis'))) #查找类为sister的所有标签

#2.4、attrs
print(soup.find_all('p',attrs={'class':'story'}))

#2.5、text: 值可以是:字符,列表,True,正则
print(soup.find_all(text='Elsie'))
print(soup.find_all('a',text='Elsie'))

#2.6、limit参数:如果文档树很大那么搜索会很慢.如果我们不需要全部结果,可以使用 limit 参数限制返回结果的数量.效果与SQL中的limit关键字类似,当搜索到的结果数量达到 limit 的限制时,就停止搜索返回结果
print(soup.find_all('a',limit=2))

#2.7、recursive:调用tag的 find_all() 方法时,Beautiful Soup会检索当前tag的所有子孙节点,如果只想搜索tag的直接子节点,可以使用参数 recursive=False .
print(soup.html.find_all('a'))
print(soup.html.find_all('a',recursive=False))

'''
像调用 find_all() 一样调用tag
find_all() 几乎是Beautiful Soup中最常用的搜索方法,所以我们定义了它的简写方法. BeautifulSoup 对象和 tag 对象可以被当作一个方法来使用,这个方法的执行结果与调用这个对象的 find_all() 方法相同,下面两行代码是等价的:
soup.find_all("a")
soup("a")
这两行代码也是等价的:
soup.title.find_all(text=True)
soup.title(text=True)
'''

View Code

#1、增
use config #如果数据库不存在,则创建数据库,否则切换到指定数据库。

#2、查
show dbs #查看所有
可以看到,我们刚创建的数据库config并不在数据库的列表中, 要显示它,我们需要向config数据库插入一些数据。
db.table1.insert({'a':1})

#3、删
use config #先切换到要删的库下
db.dropDatabase() #删除当前库

**   a、介绍**

Beautiful Soup 是一个可以从HTML或XML文件中提取数据的Python库.它能够通过你喜欢的转换器实现惯用的文档导航,查找,
修改文档的方式.Beautiful Soup会帮你节省数小时甚至数天的工作时间.你可能在寻找 Beautiful Soup3 的文档,Beautiful Soup 3
 目前已经停止开发,官网推荐在现在的项目中使用Beautiful Soup 4, 移植到BS4

 

这是最简单的spider类,任何其他的spider类都需要继承它(包含你自己定义的)。

该类不提供任何特殊的功能,它仅提供了一个默认的start_requests方法默认从start_urls中读取url地址发送requests请求,并且默认parse作为回调函数

   b、xpath

#1、删除多个中的第一个
db.user.deleteOne({ 'age': 8 })

#2、删除国家为China的全部
db.user.deleteMany( {'addr.country': 'China'} ) 

#3、删除全部
db.user.deleteMany({})

    a、response属性

     
a、selenium只是模拟浏览器的行为,而浏览器解析页面是需要时间的(执行css,js),一些元素可能需要过一段时间才能加载出来,为了保证能查找到元素,必须等待

正则匹配

十一、爬虫之MongoDB

     b、find_all

云顶娱乐平台 123云顶娱乐平台 124

#1、查看有dancing爱好的人
db.user.find({'hobbies':'dancing'})

#2、查看既有dancing爱好又有tea爱好的人
db.user.find({
    'hobbies':{
        "$all":['dancing','tea']
        }
})

#3、查看第4个爱好为tea的人
db.user.find({"hobbies.3":'tea'})

#4、查看所有人最后两个爱好
db.user.find({},{'hobbies':{"$slice":-2},"age":0,"_id":0,"name":0,"addr":0})

#5、查看所有人的第2个到第3个爱好
db.user.find({},{'hobbies':{"$slice":[1,2]},"age":0,"_id":0,"name":0,"addr":0})

> db.blog.find().pretty()
{
        "_id" : 1,
        "name" : "alex意外死亡的真相",
        "comments" : [
                {
                        "name" : "egon",
                        "content" : "alex是谁???",
                        "thumb" : 200
                },
                {
                        "name" : "wxx",
                        "content" : "我去,真的假的",
                        "thumb" : 300
                },
                {
                        "name" : "yxx",
                        "content" : "吃喝嫖赌抽,欠下两个亿",
                        "thumb" : 40
                },
                {
                        "name" : "egon",
                        "content" : "xxx",
                        "thumb" : 0
                }
        ]
}
db.blog.find({},{'comments':{"$slice":-2}}).pretty() #查询最后两个
db.blog.find({},{'comments':{"$slice":[1,2]}}).pretty() #查询1到2

    c、带参数get请求—–》》headers

View Code

   c、获取标签属性

   
b、注意:requests发送请求是将网页内容下载来以后,并不会执行js代码,这需要我们自己分析目标站点然后发起新的requests请求

    d、各种请求方式,常用的是requests.get()和requets.post()

   
 a、文档是MongoDB的核心概念。文档就是键值对的一个有序集{‘msg’:’hello’,’foo’:3}。类似于python中的有序字典

#通常我们在发送请求时都需要带上请求头,请求头是将自身伪装成浏览器的关键,常见的有用的请求头如下
Host
Referer #大型网站通常都会根据该参数判断请求的来源
User-Agent #客户端
Cookie #Cookie信息虽然包含在请求头里,但requests模块有单独的参数来处理他,headers={}内就不要放它了

    f、导入使用

      d、丰富的功能

     d、css选择器

云顶娱乐平台 125云顶娱乐平台 126

 

云顶娱乐平台 127云顶娱乐平台 128

    b、Spiders会循环做如下事情

 

#stream参数:一点一点的取,比如下载视频时,如果视频100G,用response.content然后一下子写到文件中是不合理的

import requests

response=requests.get('https://gss3.baidu.com/6LZ0ej3k1Qd3ote6lo7D0j9wehsv/tieba-smallvideo-transcode/1767502_56ec685f9c7ec542eeaf6eac93a65dc7_6fe25cd1347c_3.mp4',
                      stream=True)

with open('b.mp4','wb') as f:
    for line in response.iter_content():
        f.write(line)

十五、高性能

   
a、介绍:使用requests可以模拟浏览器的请求,比起之前用到的urllib,requests模块的api更加便捷(本质就是封装了urllib3)

 
 c、同步调用:即提交一个任务后就在原地等待任务结束,等到拿到任务的结果后再继续下一行代码,效率低下

# 分页:--limit代表取多少个document,skip代表跳过前多少个document。 
db.user.find().sort({'age':1}).limit(1).skip(2)

    c、获取二进制

    a、五种过滤器

   b、同步、异步、回调机制

#1、增
当第一个文档插入时,集合就会被创建
> use database1
switched to db database1
> db.table1.insert({'a':1})
WriteResult({ "nInserted" : 1 })
> db.table2.insert({'b':2})
WriteResult({ "nInserted" : 1 })

#2、查
> show tables
table1
table2

#3、删
> db.table1.drop()
true
> show tables
table2

    g、class scrapy.spiders.spider

# 排序:--1代表升序,-1代表降序
db.user.find().sort({"name":1,})
db.user.find().sort({"age":-1,'_id':1})

     c、find

#解析json
import requests
response=requests.get('http://httpbin.org/get')

import json
res1=json.loads(response.text) #太麻烦

res2=response.json() #直接获取json数据


print(res1 == res2) #True

云顶娱乐平台 129云顶娱乐平台 130

    a、数据库操作

云顶娱乐平台 131云顶娱乐平台 132

  改:

MongoDB是一款强大、灵活、且易于扩展的通用型数据库

逻辑运算

 
 b、
但asyncio模块只能发tcp级别的请求,不能发http协议,因此,在我们需要发送http请求的时候,需要我们自定义http报头**

     d、带参数get请求—–》》cookies

#编码问题
import requests
response=requests.get('http://www.autohome.com/news')
# response.encoding='gbk' #汽车之家网站返回的页面内容为gb2312编码的,而requests的默认编码为ISO-8859-1,如果不设置成gbk则中文乱码
print(response.text)

      b、等待的方式分两种:

  • scrapy.cfg
     项目的主配置信息,用来部署scrapy时使用,爬虫相关的配置信息在settings.py文件中。
  • items.py    设置数据存储模板,用于结构化数据,如:Django的Model
  • pipelines    数据处理行为,如:一般结构化的数据持久化
  • settings.py
    配置文件,如:递归的层数、并发数,延迟下载等。强调:配置文件的选项必须大写否则视为无效,正确写法USER_AGENT=’xxxx’
  • spiders      爬虫目录,如:创建文件,编写爬虫规则

      e、卓越的性能

获取数量

#1、scrapy.spiders.Spider #scrapy.Spider等同于scrapy.spiders.Spider
#2、scrapy.spiders.CrawlSpider
#3、scrapy.spiders.XMLFeedSpider
#4、scrapy.spiders.CSVFeedSpider
#5、scrapy.spiders.SitemapSpider

云顶娱乐平台 133云顶娱乐平台 134

** 
 g、twisted:是一个网络框架,其中一个功能是发送异步请求,检测IO并自动切换**

    a、简介

**十六、scrapy**

九、遍历文档数

数据库也通过名字来标识。数据库名可以是满足以下条件的任意UTF-8字符串:
#1、不能是空字符串("")。
#2、不得含有' '(空格)、.、$、/、和 (空字符)。
#3、应全部小写。
#4、最多64字节。

有一些数据库名是保留的,可以直接访问这些有特殊作用的数据库。
#1、admin: 从身份认证的角度讲,这是“root”数据库,如果将一个用户添加到admin数据库,这个用户将自动获得所有数据库的权限。
再者,一些特定的服务器端命令也只能从admin数据库运行,如列出所有数据库或关闭服务器
#2、local: 这个数据库永远都不可以复制,且一台服务器上的所有本地集合都可以存储在这个数据库中
#3、config: MongoDB用于分片设置时,分片信息会存储在config数据库中

云顶娱乐平台 135云顶娱乐平台 136

MongoDB的一个主要目标是提供卓越的性能,这很大程度上决定了MongoDB的设计。MongoDB把尽可能多的内存用作缓存cache,视图为每次查询自动选择正确的索引。
总之各方面的设计都旨在保持它的高性能
虽然MongoDB非常强大并试图保留关系型数据库的很多特性,但它并不追求具备关系型数据库的所有功能。只要有可能,数据库服务器就会将处理逻辑交给客户端。
这种精简方式的设计是MongoDB能够实现如此高性能的原因之一
from selenium import webdriver
from selenium.webdriver import ActionChains
from selenium.webdriver.common.by import By #按照什么方式查找,By.ID,By.CSS_SELECTOR
from selenium.webdriver.common.keys import Keys #键盘按键操作
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.support.wait import WebDriverWait #等待页面加载某些元素

browser=webdriver.Chrome()

browser.get('https://www.amazon.cn/')

wait=WebDriverWait(browser,10)
wait.until(EC.presence_of_element_located((By.ID,'cc-lm-tcgShowImgContainer')))

tag=browser.find_element(By.CSS_SELECTOR,'#cc-lm-tcgShowImgContainer img')

#获取标签属性,
print(tag.get_attribute('src'))


#获取标签ID,位置,名称,大小(了解)
print(tag.id)
print(tag.location)
print(tag.tag_name)
print(tag.size)


browser.close()

     c、易扩展性

update() 方法用于更新已存在的文档。语法格式如下:
db.collection.update(
   <query>,
   <update>,
   {
     upsert: <boolean>,
     multi: <boolean>,
     writeConcern: <document>
   }
)
参数说明:对比update db1.t1 set name='EGON',sex='Male' where name='egon' and age=18;

query : 相当于where条件。
update : update的对象和一些更新的操作符(如$,$inc...等,相当于set后面的
upsert : 可选,默认为false,代表如果不存在update的记录不更新也不插入,设置为true代表插入。
multi : 可选,默认为false,代表只更新找到的第一条记录,设为true,代表更新找到的全部记录。
writeConcern :可选,抛出异常的级别。

更新操作是不可分割的:若两个更新同时发送,先到达服务器的先执行,然后执行另外一个,不会破坏文档。

 

#1、{'key':null} 匹配key的值为null或者没有这个key
db.t2.insert({'a':10,'b':111})
db.t2.insert({'a':20})
db.t2.insert({'b':null})

> db.t2.find({"b":null})
{ "_id" : ObjectId("5a5cc2a7c1b4645aad959e5a"), "a" : 20 }
{ "_id" : ObjectId("5a5cc2a8c1b4645aad959e5b"), "b" : null }

#2、查找所有
db.user.find() #等同于db.user.find({})
db.user.find().pretty()

#3、查找一个,与find用法一致,只是只取匹配成功的第一个
db.user.findOne({"_id":{"$gt":3}})

二、基于get请求

十七、Spiders**

selenium最初是一个自动化测试工具,而爬虫中使用它主要是为了解决requests无法直接执行JavaScript代码的问题

selenium本质是通过驱动浏览器,完全模拟浏览器的操作,比如跳转、输入、点击、下拉等,来拿到网页渲染之后的结果,可支持多种浏览器

from selenium import webdriver
browser=webdriver.Chrome()
browser=webdriver.Firefox()
browser=webdriver.PhantomJS()
browser=webdriver.Safari()
browser=webdriver.Edge()
例如:
如果要使用cms数据库中的blog.posts集合,这个集合的命名空间就是
cmd.blog.posts。命名空间的长度不得超过121个字节,且在实际使用中应该小于100个字节

   a、基本使用

云顶娱乐平台 137云顶娱乐平台 138

十二、MongoDB基础

# SQL:in,not in
# MongoDB:"$in","$nin"

#1、select * from db1.user where age in (20,30,31);
db.user.find({"age":{"$in":[20,30,31]}})

#2、select * from db1.user where name not in ('alex','yuanhao');
db.user.find({"name":{"$nin":['alex','yuanhao']}}

     b、安装

from selenium import webdriver
from selenium.webdriver import ActionChains
from selenium.webdriver.common.by import By #按照什么方式查找,By.ID,By.CSS_SELECTOR
from selenium.webdriver.common.keys import Keys #键盘按键操作
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.support.wait import WebDriverWait #等待页面加载某些元素
import time

driver=webdriver.Chrome()
driver.get('https://www.baidu.com')
wait=WebDriverWait(driver,10)

try:
    #===============所有方法===================
    # 1、find_element_by_id
    # 2、find_element_by_link_text
    # 3、find_element_by_partial_link_text
    # 4、find_element_by_tag_name
    # 5、find_element_by_class_name
    # 6、find_element_by_name
    # 7、find_element_by_css_selector
    # 8、find_element_by_xpath
    # 强调:
    # 1、上述均可以改写成find_element(By.ID,'kw')的形式
    # 2、find_elements_by_xxx的形式是查找到多个元素,结果为列表

    #===============示范用法===================
    # 1、find_element_by_id
    print(driver.find_element_by_id('kw'))

    # 2、find_element_by_link_text
    # login=driver.find_element_by_link_text('登录')
    # login.click()

    # 3、find_element_by_partial_link_text
    login=driver.find_elements_by_partial_link_text('录')[0]
    login.click()

    # 4、find_element_by_tag_name
    print(driver.find_element_by_tag_name('a'))

    # 5、find_element_by_class_name
    button=wait.until(EC.element_to_be_clickable((By.CLASS_NAME,'tang-pass-footerBarULogin')))
    button.click()

    # 6、find_element_by_name
    input_user=wait.until(EC.presence_of_element_located((By.NAME,'userName')))
    input_pwd=wait.until(EC.presence_of_element_located((By.NAME,'password')))
    commit=wait.until(EC.element_to_be_clickable((By.ID,'TANGRAM__PSP_10__submit')))

    input_user.send_keys('18611453110')
    input_pwd.send_keys('lhf@094573')
    commit.click()

    # 7、find_element_by_css_selector
    driver.find_element_by_css_selector('#kw')

    # 8、find_element_by_xpath

    time.sleep(5)

finally:
    driver.close()
# 获取数量
db.user.count({'age':{"$gt":30}}) 

--或者
db.user.find({'age':{"$gt":30}}).count()
#3、find( name , attrs , recursive , text , **kwargs )
find_all() 方法将返回文档中符合条件的所有tag,尽管有时候我们只想得到一个结果.比如文档中只有一个<body>标签,那么使用 find_all() 方法来查找<body>标签就不太合适, 使用 find_all 方法并设置 limit=1 参数不如直接使用 find() 方法.下面两行代码是等价的:

soup.find_all('title', limit=1)
# [<title>The Dormouse's story</title>]
soup.find('title')
# <title>The Dormouse's story</title>

唯一的区别是 find_all() 方法的返回结果是值包含一个元素的列表,而 find() 方法直接返回结果.
find_all() 方法没有找到目标是返回空列表, find() 方法找不到目标时,返回 None .
print(soup.find("nosuchtag"))
# None

soup.head.title 是 tag的名字 方法的简写.这个简写的原理就是多次调用当前tag的 find() 方法:

soup.head.title
# <title>The Dormouse's story</title>
soup.find("head").find("title")
# <title>The Dormouse's story</title>

               
隐式等待:在browser.get(’xxx’)前就设置,针对所有元素有效

MongoDB是一个面向文档(document-oriented)的数据库,而不是关系型数据库。
不采用关系型主要是为了获得更好得扩展性。当然还有一些其他好处,与关系数据库相比,面向文档的数据库不再有“行“(row)的概念取而代之的是更为灵活的“文档”(document)模型。
通过在文档中嵌入文档和数组,面向文档的方法能够仅使用一条记录来表现复杂的层级关系,这与现代的面向对象语言的开发者对数据的看法一致。
另外,不再有预定义模式(predefined schema):文档的键(key)和值(value)不再是固定的类型和大小。由于没有固定的模式,
根据需要添加或删除字段变得更容易了。通常由于开发者能够进行快速迭代,所以开发进程得以加快。而且,实验更容易进行。开发者能尝试大量的数据模型,从中选一个最好的。

 删:

      a、介绍

    e、Spiders总共提供了五种类

MongoDB作为一款通用型数据库,除了能够创建、读取、更新和删除数据之外,还提供了一系列不断扩展的独特功能
#1、索引
支持通用二级索引,允许多种快速查询,且提供唯一索引、复合索引、地理空间索引、全文索引

#2、聚合
支持聚合管道,用户能通过简单的片段创建复杂的集合,并通过数据库自动优化

#3、特殊的集合类型
支持存在时间有限的集合,适用于那些将在某个时刻过期的数据,如会话session。类似地,MongoDB也支持固定大小的集合,用于保存近期数据,如日志

#4、文件存储
支持一种非常易用的协议,用于存储大文件和文件元数据。MongoDB并不具备一些在关系型数据库中很普遍的功能,如链接join和复杂的多行事务。省略
这些的功能是处于架构上的考虑,或者说为了得到更好的扩展性,因为在分布式系统中这两个功能难以高效地实

排序

覆盖式

云顶娱乐平台 139云顶娱乐平台 140

   
b、集合就是一组文档。如果将MongoDB中的一个文档比喻为关系型数据的一行,那么一个集合就是相当于一张表

# SQL:=,!=,>,<,>=,<=
# MongoDB:{key:value}代表什么等于什么,"$ne","$gt","$lt","gte","lte",其中"$ne"能用于所有数据类型

#1、select * from db1.user where name = "alex";
db.user.find({'name':'alex'})

#2、select * from db1.user where name != "alex";
db.user.find({'name':{"$ne":'alex'}})

#3、select * from db1.user where id > 2;
db.user.find({'_id':{'$gt':2}})

#4、select * from db1.user where id < 3;
db.user.find({'_id':{'$lt':3}})

#5、select * from db1.user where id >= 2;
db.user.find({"_id":{"$gte":2,}})

#6、select * from db1.user where id <= 2;
db.user.find({"_id":{"$lte":2}})